Programming Project: Binomial-model
option-valuation

PRASAD CHALASANI
chal@cs.cmu.edu
(412)268-3194(office)

July 31, 1998

1 Introduction

The point of this programming project is to apply your programmiDgt+,Java)
and algorithm/data-structure-design skills to certain option-pricing problems in the
binomial model. You will also learn the following concepts:

1. Use ofrecursivefunctions,

2. Use ofdynamic programmin¢pr backward recursion) to avoid an exponen-
tial growth in computation time.

3. Use of linearinterpolationto estimate a function value during backward
recursion.

Use whichever language you're most comfortable with. This initial project may be
too easy. If so let me know. If you have any questions, email me or call me at the
office.

2 Background: option pricing in the binomial model

The following sub-sections give a watered-down account of the finance concepts
you'll need for this assignment. If you're curious and want to learn more, you
are encouraged to look up Steven Shreve’s lecture notes on Stochastic Calculus
and Finance, available attp://www.cs.cmu.edu/ ~chal . The first few
chapters cover the binomial model in detail.

2.1 Binomial model

The binomial model is used to compute the “fair price” of an option on an under-
lying asset, which we will often refer to as the “stock”. The inputs for setting up
the model are:

1. Thelife T (i.e., time to expiration) of the option under consideration. Typi-
call value: 1.0 year.

2. The number of equal-lengttperiods into which T is to be divided. Each
period has lengti\t = T7'/n. Fork = 0,1,2,...,n, discrete timet will
refer to continuous-timeéAt = k7' /n. Typical value:n = 10, 20, 30, 60.

3. The continuously-compounded annualizis#t-free interest rate . Thus a
dollar invested in a risk-free instrument at time 0 would be wdtth: ¢"2!
at timeAt years. Typical valuer = .05

4. The annuaVolatility o of the stock price. Typical valuer = 0.3,0.1.
From these inputs, the following parameters are computed:

1. Theup-factor « and thedown-factor 1/«, where
U = exp {O‘\/ At} = exp{oy/T/n}. (@H)

2. Theup-tick probability p, and down-tick probability = 1 — p, where

R—1/u e?—1/u
Cu—1/u u—1/u

(2)

The stock price at (discrete) timeis denotedS;. The initial stock price
Sp is non-random and known. The processis specified as follows, fok =
0,1,...,n—1:

G = Sk with probability p,
17 (1/u)Ss with probabilityl — p.

Notice that with the above choice of parameters, the expected valtig pigiven
Sk is SkR, i.e.,
E(Sk+1|Sk) = RSk,

which means the discounted stock price process is a martingale.

The stock price process can be described binamial tree, where the initial
stock priceSy is the root node, and each path in the tree represents a possible
sequence of stock prices, Sy,...,5,. A price pathw is characterized by a
sequence of random variablag, X, ..., X, whereX; = 1 if there is an up-
tick at timek and—1 otherwise. That is,

Sk+1:Ska+17 k:O,l,...,n—l,

and
PiXy=1=p; PXp=-1=¢=1-0p.

We will also use the random variable
k
V=Y Xi, k=1,2,...,n,
=1
which is the number ofip-ticks minus down-ticksy timek.

2.2 Binomial lattice

Note that the stock pric8;. at timek only depends on theumberof up-ticks A,
that have occured by time

S = Soqu(l/u)k_Hk = Soutk=k,

Thus in the binomial tree, several nodes at déptictually represent theame
stock priceS;. We use this fact to collapse the binomial tree intbimomial
lattice (sometimes also called recombining binomial tree A node numbered
(k,7) in the lattice represents a state at timevhereY, = i, i.e. the num-
ber of up-ticks minus down-ticks equals Thus the root node of the lattice is
(0,0). The two nodes at depth 1 afe— 1) and(1, 1). The three nodes at depth
2 are(2,-2),(2,0), and(2,2), and so on. In general the nodes at deptare
(k,—k),(k,—k+2),...,(k, k). See Fig. 1 for a picture of a lattice. We will
abuse notation slightly, and denote the value of a random variabiestate(%,)
by Z(k, ¢). For instance the stock pricein state(k, 7) is S(k, 7). Note that

S(k,i) = S(0,0)u’ = Sou'. (3)

One useful way to think of a lattice nodk, 7) is that it represents thellection
of tree pathgeaching deptt from the root, that havé more up-ticks than down-
ticks.

(3.3

(31)
(0.0)
(3-1)

(3-3)

Figure 1:A binomial lattice. A nodek, i) represents a state at tifhevhen the number
of up-ticks minus down-ticks i

2.3 Options

A European-style optionwhich expires at discrete timegives the owner the right
to exercisethe option at time:. When the owner exercises the option at time
she receives a payaff,,. The payoffz,, depends only on the specific stock-price
historySy, Sy, . . . , S, that has occurred. For instance, a Europssioption with
strike K has payoffG, = (S, — K)* where for any reak, ™ = max{z,0}.
Similarly, a Europeaput option with strike K has payoff+,, = (K —.5,)". Note
that for these two simple options, the pay6ff depends only on thénal stock
price S,,. Such options are said to Ipath-independent By contrast, the payoff
of a European-stylAsian call option with strike K is given byG,, = (4, — K)™T,
where A;. is the average stock price from timdo time£:

_ So+S1+ ...+ Sk

A
k E+1

(4)

The payoff of an Asian option is thus cleapath-dependent

An American-style option which expires at discrete timegives the owner
the right to exercise the option ahytime before the expiration time. Such an
optionis characterized by@ayoff proces&r, k = 0,1, ... , n, whereGG;, depends
only on the specific stock-price patfy, Sy, ... ,.S; that was realized at the time
of exercise. For instance an American call option with stikehat expires at
time n has payoff function7, = (Sx — K)* for k = 0,1,...,n. Similarly an
American-style Asian call option has pay6ff, = (Ay— K)* fork =0,1,...,n.

2.4 Pricing options

Denote a typical node in the (non-recombining) binomial tree kgnd its up- and
down-successors respectively By andv~. Note that a node at depthk in the
tree defines apecificpath of stock pricesy, Sy, ..., Sx. When referring to the
value of a procesg, at a nodes, we will drop the subscript o#, and denote it by
Z(v). For instance, the stock price at nodés S(v), and theaveragestock price
on the path from the root tois A(v). We define the special random varialilév)
to be thedepthof v. Thus,D(v) denotes the time corresponding to the staté/e
also writev—w to denote that “leads to”w in the tree, i.e.w is a successor of
v. For any nodes let P(v) denote theprobability of the path from the root te.
Abusing notation slightly, when—w we write P(w|v) to denote the probability
of reaching a node, starting fromw. Clearly,

P(w)

P(w|v) = P(v)

The expectation of a random variatife is

EZr= >, Z(v)P(v).

v:D(v)=k

Similarly, if D(v) < k, theconditional expectationf a random variable’;, given
the current state, is

E(Zklv) = Z Z(w)P(w]v).

w:D(w)=k,v—rw

Consider a European-style option with payoff functign Thearbitrage-free
value of the option at a deptl-nodev is given by
G,

V(v)= R'E [ﬁ

v] — RETE(Go). (5)

From this it is easily seen that for non-terminal nodése., D(v) < n), V (v)
can be recursively written as

iy = VD) ©

and for terminal nodes, the value is simply the payoff:

V(v) = G(v). (7)

For pathindependentptions, the recursive expressions above remain valid even if
v,vT, v~ represent binomidhttice nodes rather than tree nodes.

The valuation of American-style options is complicated by the fact that the
owner may use atrategyto exercise her option: at any time< n, she can decide
whether or not to exercise the option, based on the history of the stock price so far.
Fortunately, the arbitrage-free value of an American-style option at a ncde
be expressed recursively in a manner similar to the European case. Specifically, on
the (non-recombining) binomial tree, for non-terminal

_ pV(H)+ (1 -pV(v)
V(v) = max {G(v), = } ,

(8)

and for terminab,
V(v) = G(v). 9

Theoptimal exercise strategy(i.e. the one that maximizes the expected dis-
counted payoff) for the owner of the option can be easily defined from the backward-
recursive computation: While moving forward on a path from the root node, if the
current node i, exercise immediately if and only i (v) = G(v), or equiva-
lently,

V() + 1 -p)V(v7)
7 .
Thus, on any tree path, the optimal exercise point isstimiestnodev where the
option payoffG(v) from immediate exercise equals the option valie).
Again, for pathindependentptions, the same expressions can be used on the
binomial lattice.

Gv) =

3 Programming problem: using recursive functions

3.1 American put option.

m This problem asks you to write a C/C++/Java program to compute the (arbitrage-
free) value of a simple American-style put option on a stock (defined in Section
2.3). Use a recursive function, and dot explicitly construct the binomial tree.
Recall that the payoff of a put option with striké when exercised at timé is
G = (K — Si)™. Equivalently, when exercised at a nodef the binomial tree,
the payoff is

G(v) = [K — S(v)]*t.

The inputs to the program are:

Expiration timel’ (years) of the option,
Number of time-divisions,
Risk-free annual interest rate

Stock volatilityo,

a > w NP

Initial stock priceS, (dollars),
6. Strike priceK (dollars).

Hints: First compute the binomial tree parametefsip-factor) ang (up-probability),
using (1) and (2). Next, we would like to use the expressions (8) and (9) to define a
recursive functiorl’ (v) to compute the option value at a nodeHow would you
represent a node? Convince yourself that, since a put option is path-independent,
it suffices to represent nodeby its depthk = D(v) and the stock pricé& (v).
Givenv = (k,), the representation fart andv™ is easily computed (how?).
Thus your recursive function would look likKé (%, .S), and should return the op-
tion value at a node of depth at which the stock price i$. In other words,
V(k,S) is the option value in the state at tinkein which the stock price is5.
Clearly the option value at time 0 (which is what we need to ultimately compute)
is then obtained by invoking (0, Sy).

3.2 Time complexity.

m Run the program witle = 10 time-divisions and see how long it takes. Based
on this, estimate how long the program would take with 60 time-divisions. To
answer this, you'll need to understand tirae complexityf(») of the algorithm:
this means that the algorithm takes time proportionaf te) for some function.
What is the functiorf () in this case?

3.3 Asian call option.

m Modify your code to compute the value of an American-s#gan call option
on a stock, with striké<. As mentioned above, the payoff of this option at a
binomial-tree node is

G(v) = [A(v) - K]7,

where A(v) is the stock-price average on the path from the roat {defined in
(4)). The inputs to this program are the same as before. Again, do not explicitly
construct the binomial tree; use a recursive function.

Hints. Since an Asian option is path-dependent, we will need to represent a
nodev by more than just the depthand the stock pric& (v). Convince yourself
that it suffices to represent a noddy (k, S, A) wherefk is the depthD(v), S =
S(v), andA is A(v), the average stock price on the path from the roat tGiven
v = (k,S, A) you can easily compute the representationiforand v~ (how?).
Thus your recursive function would look liké(k, S, A), and should return the
value of the option in the state at timlewhere the stock price iS, andthe stock-
price-average so far i$. The time-0 value of the option is thén(0, Sy, Sy).

4 Programming problem: using dynamic programming
on the lattice

4.1 American put option.

As the number of time-divisions increases, the time taken by the above recur-
sive pricing function increases rapidly. (You should have answered exactly how
fast in the previous section). For a simple put option, however, we saw that the
option value at a node = (k,.5) depends only ot and S, i.e., the option is
path-independent. In particular, at every depthedew with S(w) = S, the op-

tion valueV (w) is thesame.Thus the above recursive-function approach is very
wasteful: the functior/ (£, S) in invokedeverytime a deptht nodew is reached

with S(v) = S. We can avoid this waste if we represent the tree as a binomial
lattice, which as explained in Section 2.2 collapses all nodes at a given depth that
have the same stock price. In other words, the lattice representation does not lose
any information, as far as pricing this option is concerned. As mentioned in Sec-
tion 2.4, for path-independent options, the recursive expressions (8) and (9) remain
valid on the lattice.

m How would you write a program to take advantage of this fact? An easy way
to do this is to explicitly create a lattice using say a two-dimensional ariidly

so thatV'[k][] stores the value of the option at lattice ndde:) (recall that: is

the number of up-ticks minus down-ticks, which uniquely determines the stock
price at the lattice node). Start from the end of the lattice, kes n, and set

the option valué/[n][i] for i = —n, ..., n, to be equal to the immediate payoff
(this is expression (9)). Then continue backward on the lattice, computing for
eachk, the values/[k][i], i = —k, ..., k, (using (8)) and so on until you obtain

V[0][0], which is the time-0 option value. This type of procedure is calgthmic
programming. Write the code to compute the option value as outlined above.

4.2 Time complexity

m How long does your program take for= 10? What about: = 60? What is the
time complexity of your algorithm?

4.3 Optimal exercise strategy

m Modify your code so that it prints out the optimal exercise strategy for the given
American put. In particular, print out the lattice node coordinétes) where it is
optimal to exercise the option immediately. Recall that on any path in ttieda

the optimal exercise point is the earliest nadehereV' (v) = G/(v).

5 Asian call option: Hull-White interpolation method

Unfortunately, an Asian option is path-dependent, so the above lattice approach
cannot be used to compute the value faster. In fact, in general the average stock
pricesA(v) for all depth% nodesv of the tree are different from each other! So

at depthk there are” possible stock price averages. Thus, unlike in the case of
an American put option, there is no wasted computation in the recursive function
approach above; each specific invocatiofk, S, A) is made only once. Conse-
guently, the valuation of Asian options (European- or American-style) has been a
very hard problem in finance. However, numerapgroximatealgorithms have

been proposed, and you will implement one such recent algorithm of Hull and
White [3].

To describe the Hull-White method, it is best to consider the lattice-based
American put algorithm you implemented in Section 4.1. There, we defined a
two-dimensional array’[][] whereV[k][i] stores the option value at lattice node
(k, 7). This does not work for Asian options because each tree-path represented by
a lattice nodé*k, ¢) has a different average-stock pridg, which we could number
ay, as, ..., a,. However in principle weeould extend this to Asian calls using a
three dimensional array/[|[][] whereV [k][7][/] stores the option value at tinie
when there have beemmore up-ticks than down-tickandthe average stock price
so far isa;. Obviously this method would be just as slow as the recursive-function
approach.

The main idea of the Hull-White approximate algorithm is this: Don’'t compute
the option value at every possible value of the stock-price-average at lattice node
(k,7); rather, compute it only for certaspecialvalues of the average stock price,
of the form

Soemh7

for a specificgrid sizeh (such as 0.01) and different integers (which could

be negative). Specifically, use a 3D arréy|[][], whereV [k][7][] represents the
(American-style) Asian call option value at the state at timghere the up-ticks
minus down-ticks ig, and the average stock prités Soe’”. For each Ittice node

(k,), a certain range of possible values of the third ingerust be considered.

We letay; be the smallest index considered at ndglei) andby; be the largest.
The rang€(ax;, br;) must be chosen so that all possible stock-price-averages that
are considered at nodé, :) lie betweenSy exp{ax;h} andSyexp{by;h}. Thus

aj; must be chosen to be the biggest integesuch that

Soexp{mh} < smallest possible average(at 7)
andbg; must be chosen to be the smallest integesuch that
Soexp{mh} > biggest possible average (@t 7).

You can use a conservative estimate for the right-hand-sides of the inequalities
above. For instance (this is Pankaj Mody'’s idea) the “smallest possible average
at (k,7)”, is clearly no smaller than the smallest possible stock price on any path
reaching(k, 7), which is

Soul =812 = S exp{o\/T/n(i — k)/2}.

(See Fig. 1 and consider paths reachiggl) to convince yourself of this). Sim-
ilarly the “biggest possible average @t :)”, is clearly no bigger than the biggest
possible stock price on a path reachiikg:), which is

Sout 012 = So exp{a\/T/n(k + i)/2}.

Thus you can use
i—k
T = T)
ay {m/ /n 57 J

k+1
by = [m/T/n 5T -‘ .
The function| z | is computed by the C++ functidioor(x) , which returns the

biggest integeK z. The function[z] is computed byeil(x) , which returns
the smallest integer .

and

'There may actually be no state with this specific average stock price, but this is immaterial to
the algorithm.

10

The first stage in the Hull-White algorithm is to compute the above ranges
(aki, by;) for each latice node(k,) and set up the appropriate 3D arr&y|[][] to
accomodate these ranges.

Using the above data structure, let us apply the recursive expressions (8) and
(9) to compute thé’ [k][][j] values. Note that we can s€{n][i][j] to be simply
(Soe?™ — K)* (this is the option value at time when the average stock price is
Soejh).

Now suppose we have computed the enthigs][][] forall g = k£ + 1,k +
2,...,n. Let us consider the computation of a specific ertiy][:][j]. This
represents the (approximate) option value of the option in a state at klegtare
the stock price isSou, and the average stock price so fasis’”. Let us denote
this state by(v) (this is essentially a tree node), so thdt) = Sou’ and A(v) =
Soe?™. You may think that we can now simply use the recursive expression (9) to
computeV [k][7][j]. But life is not so simple. To use the recursion (9) you must
first compute thes and A values at nodes™ andv~ (you already did this for the
recursive-function approach of Section 3.3); denote these valuggas, A(v™),
etc. For instance,

(k+ 1)A(v) + uS(v)

S(vT) = uS(v); AvT) = r2

Now to use the recursion (9), you also need the valifes™) andV (v~). Consider
for exampleV (v1), which is the option value at lattice node+ 1,7+ 1) on a
path where the arithmetic average so farlia’ ™). However, at this lattice node
you have only computetd [k +1][i+ 1][] for certainspecialvalues of4;,, namely
for those of the fornboe’” for all integersj in the range(ay 1 41, bxt1,i+1). The
arithmetic averagel (v+) will notin general be of the fornsye®” for integers.

This leads to thénterpolation idea. Instead of using thexactvalues ofV’ (v)
andV (v~) in the backward recursion (9), we will use approximatidi{s*) and
V (v™) respectively. Hull-White use linear interpolation to compute these approx-
imate values. Consider for instantgvt). From the way we chose the ranges
(ak;, bi;), there must exist somein the ranggaj41,i+1, bx+1,+1) such that

21 = Spe’ <z = AT) < 29 = SoelstDh (20)

We have already computed the option valges= V [k + 1][i + 1][s] andy, =
VIk+1][i+1][s+1]. We therefore approximate the valliév™) by the interpolated
value

We finally computel’ (v) = V[k][7][j] using expression (9) with' (vT) and
V (v™) on the right hand side replaced by their approximaticns™) andV (v™)
respectively. In this way we eventually compuit¢0][0][0], which is the time-0
value of the American-style Asian call option.
m Write the complete code to implement the Hull-White method described above.
In addition to the usual inputs to this code, we now have an additional input: the
grid-sizeh that determines the “granularity” of the interpolation.
m For smalln (less than 15 or so), compare the answers you get from the Hull-
White method using various grid sizés(use for examplé. = 0.1 and lower),
with the exact values using the recursive-function method of Section 3.3. Also
see how much improvement in accuracy you get by reducing the grich siaee
the Hull-White answers consistently above or below the exact answers? (It can be
shown that the Hull-White approximation is in fact apper-boundn the exact
price) Run the Hull-White algorithm fok = 0.05 andn = 50, and see how long it
takes. Compare this with the length of time you estimated the recursive function-
based program would take (you probably will not want to wait for the answer using
that program!).

6 Black-Derman-Toy: A Binomial Term-structure Model

As before, letl’ be the time horizon, and letbe the number of time-divisions, so
that At = T'/n. The short-term interest rate, short-rate, at timek, is defined

as the risk-free interest rate that holds from (discrete) ime time & + 1. In

other words, ifr is the short-rate at timk, then investing one dollar in a risk-free
instrument at time: will result in a payoff ofexp{rAt} at timek + 1. In the
models of the previous sections, we assumed that the short-rate at allitimes

a fixed constant. We will now consider a model where the short-rate is random,
and follows a binomial process somewhat like the stock-price process introduced
earlier. We will for the moment ignore the model for the stock price process.

6.1 The model

The short-rate model we will describe is called Bkack-Derman-Toy (BDT)
model [1, 4]. The model is described in terms of the binonaitiice introduced in
Section 2.2. Recall the notation introduced in Section 2.4, where anodte
binomial lattice represents a certain state, 4itd) denotes the value of a random
variableZ in statev. Recall also thab(v) is the depth ob, i.e., the discrete time
corresponding te. Finally, recall that* andv~ are the up- and down-successors

12

of v.

For anynon-terminalnodew, let r(v) be the short-rate that holds in state
from time D(v) to time D(v) 4 1. To illustrate, forv = (3, —1), r(v) = 0.1 means
that if the state at time 3 i63, —1), then the short rate from time 3 to time 4 is
10%. This means one dollar invested in a risk-free instrument at time 3 in state
(3, —1) will result in a guaranteed payoff ekp{r(v)At} attime 4. In particular,
for the starting node, = (0, 0), r(vo) is thefixed, known, non-randoshort-rate
attime 0. (This is analogous to knowing the initial stock pt$gen the stock price
binomial model.) The BDT short-rate model has two sets of parameters:

Ao, A1y - - - 5 Qp—1,

and
b07 b17 s 7bn—1-

For0 < k < n, the short-rate(v) at lattice node» = (&, ¢) is given by
r(v) = r(k,i) = ap(bp)’, k>1. (11)

Notice the similarity of this model to the stock-price model (3)zif = (0, 0)
(the initial short-rate) for alk, andb;, = u for all k£, the short-rate model would be
exactly the same as the stock price model.

The short-rate(v) is closely related to thene-period discount factor f(v)
in statev:

f(kv Z) = exp{—r(k, Z)At}
This means that if the current statevis= (k, ¢), then one dollar at timé + 1 is

worth f(k, ¢) in the current state. Finally, the probability on every branch in the
lattice is assumed to be 0.5.

6.2 Pricing short-rate securities using the model

Consider an arbitrary European-style security with expiratiprwhose payoff

((v) dependsonly on the short-rat@). Such a security is clearpath-independent
Recall that a European-style security can be exercised only at expiration. The BDT
model can be used to price such an option. As you might expect, the pricing of a
short-rate derivative in the short-rate model is exactly analogous to the pricing of
a stock-price derivative in the earlier stock-price model. In that earlier model, the
derivative’s payoff depended on the stock price; in the present case, the payoff of
the security depends only on the short-rate. Indeedatiberage-free value V (v)

at nodev of such a security is defined as tbegpectation of the discounted payoff
over paths fromv to leveln in the lattice.

13

We now make this more precise. For any patim the lattice, letP(7) denote
its probability , which in this case is simply to the power of the length (i.e.
number of edges) of the path. LE{r) be thediscounton a pathr, defined as the
product of the one-period discount factors along the path. Abusing notation, define
thepayoff G;(7) on a pathr to be the payoff at the node at the end of the path. For
instance, in Fig. 1, for the path

m=(0,0)(1,1)(2,0),

the payoffG'(x) = G(2,0), the probabilityP(r) = () = 1/4, and the discount
F(x) = f(0,0)f(1,1). Note that we daotincludef(2,0) in F'(x) sincef(2,0)
applies for the period from time 2 to time 3, which is not covered by the pdih
only goes up to time 2).

Now we can state our definition df (v) more precisely: it is the sum over
all pathsr from v to leveln, of the producP(x) F'(7)G(x); this is exactly the ex-
pected discounted payoff. For example, in the lattice of Fig. 1, consider a European
option expiring at time 2, whose payoff functichis

G(2,2)=0, G(2,00=1, G(2,-2)=2.

Supposef(v) = .9 at all nodesv. Then to compute the valug (0, 0) of this
security at nod€0, 0), notice that there are four paths froif 0) to level 2 (the
expiration time):

up-up, up-down, down-up, down-down,
and the probability omach path id /4. Therefore,
1 1
1 1
+ Zf(ov O)f(L _1)G(27 0) + Zf(ov O)f(L _1)G(27 _2)
_ l 2 l 2 1 2
= 4(0.9) + 4(0.9) + 4(0.9) 2
= 0.81

From this you can easily see that the vallie) of a European short-rate option
expiring atn is given by thebackward induction

Vo) = {G(v) if the depthD(v) is 7, 12)

) (VT +V(v)) otherwise

14

which is exactly analogous to expressions (6) and (7) for stock options.

m Write code using the above backward induction to price a European call option
on the short rate, with strike raf€. This is analogous to a call option on the stock
price. The payofts(v) of such an option at node= (%, ¢) is given by

G(v) = (r(v) - K)F = [an(b)’ - K]

The input parameters to your code are the option expirationfinbe number of
time-divisionsn, the strikeX’, and the initial short-rate(0,0). Assume that the
BDT parameter$; = 1.01 for all z, anda; = (0, 0) for all 7. Your code should

use the fast dynamic programming approach you implemented in Section 4.1 (i.e.,
donotuse a recursive function).

6.3 Green’s function and forward induction

We will now consider an alternativigrward-inductive way to compute the value
of a European short-rate option. First we will need the concept mire-state
security. For a lattice nodék, i), a pure-state security(k, 7) is simply a (Euro-
pean) short-rate security expiring at tirhehat pays off $ lonly at (k,¢) and O
everywhere else.

Now for a lattice nodék, i), Green’s function [2, 4] H (k, ¢) is defined as the
time-0 value of the pure-state securityk,). For instance, in Fig. 1{(2,0)
is the time-0 value of the pure-state secukifg, 0), i.e., a European short-rate
option expiring at time 2 that pays $ 1 at node0) and zero at all others. Using
the definition of “value” given in the previous sub-section, we comgiite, 0)
as follows: We take the sum over all pathgrom (0, 0) to (2, 0), of the product
P(m)F(r):

H(2,0)= 1/(0,0)7(1,1) + 1F(0,0)7(1,~1)

Note thatH (k,) can be computed by a simpierward induction:

H%+Lo:%Uﬂhi—mﬂhi—m+ﬂﬂm+lﬁ%J+U]iHﬂgk—L
:%H%J—Df@J—U ifi= k41, (13)
:%H%J+Df%J+D ifi=—k—1,

The initial condition isH (0, 0) = 1.

15

Note that an arbitrary short-rate security expiring at timeith payoff G/(v)
can be viewed as a combination of pure-state securities. For instaoed, the
example considered before of a European short-rate security expiring at time 2,
with payoffs given by

G(2,2)=0, G(2,0)=1, G(2,-2)=2.

This can be viewed as a combination of O pure-state secusit®eg), one pure-
state securitys(2,0) and 2 pure-state securitie$2, —2). Naturally the time-0
value of the combined security is simply the sum of the time-0 values of the ap-
propriate multiple of the individual pure-state securities. In this example, the value
of the combined security is the sum of the value of the pure-state ses(2ijt)
(which isH (2, 0)) plus 2 times the value of(2, —2) (which isH (2, —2)).

In general, the time-0 value of a European short-rate security expiring at time
(n + 1) with payoff functionG (v) is given by

n+1
V(0,00= > H(n+1,i)G(n+1,9) (14)

i=—n—1

In factV (0, 0) can also be written as

V,0= Y H(n,i)f(n,i)%[a(m Lit1)+Gm+1,i—1)]
ot (15)

m Write code to price the short-rate call option of the previous subsection, but this
time byforward inductiornusing the above Green’s function approach (14). Use an
arrayH[][] to store the Green’s function values. First compute the Green’s func-
tion values by forward induction using (13). Then compute the option value using
(14). Assume the same input parameters and BDT-parameters as in the previous
subsection.

6.4 Pricing bonds

What do we really mean when we say that the “risk-free rate of interest” for a short
period of timeAt is »? This means there is a certain risk-less instrument with the
property that that if you invest $ 1 in this instrument at time 0, then you will receive
a payoff ofe” ¢ dollars at time at time\¢. A government bond is an example of a
risk-less instrument. More preciselyzaro-coupon bond(also informally called

a “zero,” or a “pure-discount bond”) maturing at discrete tilnis an instrument
that pays 1 dollar at discrete time tirhgwhich is continuous timéA¢t). Unlike

16

a call option, the payoff from a bond at maturity is fixed and not uncertain. This
is why a bond is called ask-lessinstrument, or dixed-incomenstrument. Of
course, to own a bond, one must pay a price, and we now consider how to compute
this price.

Consider an(m + 1)-maturity bond. This is simply a European short-rate
security that expires at timgn + 1) and pays exactly $ 1 @verylattice-node at
level m + 1, i.e.,G(v) = 1 for every nodev at levelm + 1. Therefore, in terms
of Green’s function, we can write the time-0 value of e + 1)-maturity bond,
written B,,, 11, in two different ways (see (14) and (15)):

m+1

Bnyi= y, H(m+1,i) (16)
i=—m—1
= > H(m,i)f(m,i) (17)

i=—m

The second form will be useful for us later, when we fit the parameters of the short-
rate model so that the bond prices computed from it match their known market
prices.

m Modify the code of the last section to compute the time-0 value of a bond ma-
turing in time7". Input parameters to your code are the same as in the previous
subsection (except that you don’t need the stfikin this case). Assume the same
BDT parameters as in the previous subsection. Price the bond using the forward-
inductive approach using Green’s function (expression 16). Use an Hifi@yto

store the Green’s function values. First fill in the array ugto|[] and then use
expression 16 to compute the bond valtie

m Return to the backward-induction approach you implememented in Section 6.2
using (12). Use that approach to pricd anaturity bond aeverynodewv of the
lattice. Notice that to start the backward induction, at the terminal noges must

useV (v) = G(v) = 1, since a bond is worth exactly 1 dollar when it matures. The
rest of your code would look just like the code for the short-rate call option you
implemented in that Section. (You will need the bond valu¢s) at every lattice
node for the next section).

6.5 Pricing bond options

In the last exercise of the previous section you computed the Wa{ug (which

we will here denote by3(v)) of a T-maturity bond at every lattice node. Now

we can define call and put options on bonds exactly like the corresponding options
on stocks; the only difference is that the underlying variable for bond options is

17

the bond price rather than the stock price. Specificallyyfork n, anm-period
European-styleall option with strike X' on ann-maturity bond can only be exer-
cised at timen, and the payoff at a levek nodev is given by

G(v) = (B(v) - K)*.

Notice that there are two different maturities involved here: the maturity of the
bond, which is longer than the maturity of the option on the bond.

Inthe BDT model, bond options are valued using the same backward-recursion
approach based on (12) that you implemented in the last Section and in Section 6.2.
To compute the option price, you will start at the end of the lattice (leyelnd
compute the bond valud3(v) at each node by backward induction (as you did
in the last Section), until you reach level At levels belown you will no longer
need the bond values. At level, you will also compute the terminal values of the
option. In particular, at a nodeat levelm, from Eq. (12), you will compute the
option valueV (v) as

V(v) = G(v) = (B(v) — K)*.

At a nodev at a level smaller tham, you will use the second equation in (12) to
compute the option value, and finally arrivelao, 0).

m Write code to price a European call-option with strikeexpiring at time7’/2

on a bond that matures at tifle Usem = |n/2] as the expiration time for
the option (this roughly represents continuous-ti). Your input parameters
should bél’, n, K as before. Assume the same BDT model as before.

6.6 Fitting the model to current bond yields

So far we just assumed that the parameter-éets and {b;} came “out of the
blue”. Of course, for the model to be useful, these parameters should be chosen so
that they are consistent with the current market data. We now describe how this is
done.

Theyield Y,, of an m-maturity bond (at time 0) is defined as the effective
constant interest-rate that would result in the same growth as-araturity bond.
In other wordsY,,, satisfies

— = exp{Y,,mAt}, (18)
or
Y, =

— In B,,.
mAt 1

18

(Recall thatB,,, is the time-0 price or value of the-maturity bond). Theurrent
term-structure of interest rates is a specification of the current yields

Y17Y27"' 7Yn7

of bonds maturing at (discrete) timés2, ... , n. Note that from the above equa-
tions, this is equivalent to specifying the current prices of these bonds.

In this sub-section we will consider how to fit the BDT model parameter$
to the current term-structure, given the parametérs. In other words, we would
like to pick the{a;} parameters so that the bond-prices (or equivalently, bond-
yields) match the current term-structure given by {ie}. This is done by the
following algorithm:

1. Initially setag = Y7, and set the Green'’s function valugg0, 0) = 1,
H(1,-1)= H(1,1) = (0.5) f(0,0) = (0.5) exp{—Y1 At},

and lett = 1. In the code, you will have an arr&{][] to store the Green'’s
function values.

2. Compute the,, value as follows. At this stage, thi&(k, i) values are known
forall ¢ = —k, ..., k. From the input dat&’,; is known, which means
By.41 is known (expression (18)). From expression (1Hp,; must satisfy

k
Bk-l—l = Z H(kvl)f(kvl)

= Z H (ki) exp{—r(k,i)At}

k
= 3" H(k, i) exp{—ax(by) At} (19)
i=—k

Since the{b;} parameters are known, the only unknown above;isso
call the expression (19)(ax), to emphasize that it is a function @f. You
therefore need to find; so thatB,y1 = ¢g(ax), i.e., you must solve the
(non-linear) equationt(z) = 0 whereW¥(z) = ¢g(z) — Bi4+1. You can
use the standard Newton-Raphson (see Appendix) method, with initial guess
xrg = aj_1, to solve this equation for; this solution will be the:;, value.

3. Computef (k+1,4) fori = —k—1,..., k+ 1 using the forward induction
(13), with

fk,i) = exp{—r(k,i)At} = exp{—ay(by)' At}.

19

(In this expression, use the value just computed.)
4. Increment: by 1. If &k < n, return to step 2; otherwise, stop.

m (a) Implement the above algorithm to find the BDT parametgfs,, as, - .. , a1
so that they fit the current term-structure. Assume that 1.01 for all 7, and
that the current term-structure is given by the bond priBes= (0.99)*, for

¢ = 1,2,...,n. The input parameters to your code d&'eandn. Given any
T, n as input, your code should outpt, a1, ..., a,_1.
m (b) Use your{«;} values to compute the bond pricBs, i = 1,2,...,n, using

the approach you used in Subsection (6.4). These should match the specified values
(0.99)°. Note that you can use the Green’s function values that you just computed
in the algorithm above, and use expression (16) to compute the bond prices.

m (c) Use your{a;} values to price a call option on the short-rate that expires at
timen — 1 with strike K (this was described in Subsection 6.2), using the approach
used in Subsection 6.3. Again note that you can use the Green'’s function values
that you just computed in part (a), and use expression (14) to compute the option
value.

References

[1] F. Black, E. Derman, and W. Toy. A one-factor model of interest rates and its appli-
cations to treasury bond optionBinancial analysts journalpages 33-39, February
1990.

[2] D. Duffie. Dynamic Asset Pricing Thearrinceton University Press, 2 edition, 1996.

[3] J. Hull and A. White. Efficient procedures for valuing european and american path-
dependent optionslournal of Derivatives1:21-31, 1993.

[4] F. Jamshidian. Forward induction and construction of yield curve diffusion models.
Journal of fixed incomepages 62—74, June 1991.

APPENDIX

A The Newton-Raphson method to solve single-variable
equations

If you have code to compute a one-variable functfgn), the Newton-Raphson method

can be used to find the value effor which f(x) = 0. The algorithm is as follows. Let
a > 0 be the solution accuracy desired (use- 10~%), and lets > 0 be an “infinitesimal”

20

quantity (useS = 10~'Y). Let MAX be the maximum number of iterations by which the
algorithm should scceed.

1.
2.

Setr = xy, wherez, is a “good guess” for the solution. Let= 1.

Set
; f(x)

ST

wheref’(x) is the derivative off w.r.t. z, and is computed by the approximation

f(z) ~ fz+9) - /(=) 6; — /(=) .

. Increment by 1, and set = z’.
. If | f(x)| < a, STOP (is the desired solution).
. Otherwise, ift > M AX STOP and print FAILURE (since no solution has been

found within MAX iterations).

. Otherwise, return to step 2.

21

