The class declarations for the LattKey, LattNode, LattList, and Lattice classes are shown here. These classes
provide a data structure for holding a lattice that is similar to the data structure used in the AbstractOption
class you saw in homework. This lattice data structure, however, is more flexible because it tracks multiple
assets and multiple auxiliary processes. In addition, the number of successors of each node and the
corresponding edge probabilities are not fixed. No methods are given here. Part of the exam will ask you to
write methods in the Lattice class. You should familiarize yourself with these classes prior to the exam.

LattKey.java
package ExamlLatti ce;

public class LattKey inplenents LattVal ues

{
/**
* The (int) tine value
*/
public int time;
/**
* The (double) short rate
*/
public doubl e short _rate;
/**
* The (double) array of asset prices
*/
public doubl e asset _prices[] = new doubl e[NUM ASSETS]
/**
* The (doubl e) array of aux process val ues
*/
public doubl e aux_processes[] = new doubl e[NUM_AUX_ PRCCESSES] ;
/**
* The (doubl e) holder variable (refer to Question 5)
*/
public doubl e guest 5_val ue;
/**
* The (doubl e) holder variable (refer to Question 6)
*/

public doubl e guest 6_val ue;

/**

* Constructs a Key object, and sets the initial tine val ue.
*

* @aram aTine the (int) time val ue
*/
public LattKey(int aTinme)

//details renpved

}

/] ot her nethods renpved

LattNode.java

package ExamlLatti ce;

public class LattNode inplenments LattVal ues

{

/**

* The (Latt Node)
*/

reference to the previous node with this tinme val ue

public LattNode prev;

/**

* The (Latt Node)
*/

reference to the next node with this tine val ue

public LattNode next;

/**

* The (LattKey) data val ue

*/

public LattKey Kkey;

/**

* The (int) nunber of predecessors

*/

public int nunPred,

/**

* The (int) nunber of successors

*/

public int nunSucc;

/**

* The (Latt Node)
*/

reference to the predecessor node

public LattNode predecessors[];

/**

* The (Latt Node)
*/

array of references to successors

public LattNode successors[];

/**

* The (doubl e) arrays of incom ng and out goi ng edge
* probabilities (the ith probability corresponds to
* the ith edge in the pred/succ array)

*/

public doubl e i ncom ng_edge_probs[];
publ i c doubl e out goi ng_edge_probs[];

/**

* Constructs a LattNode object

*/

public LattNode(LattKey k, int succ, int pred)

//details renpved

}

LattList.java

package ExamlLatti ce;

public class LattLi st

{
/ * %
* The (LattNode) head of the |ist
*/
public LattNode head;
/ * %
* Constructs a LinkList object, initially the
* list will be enpty (head == null)
*/
public LattList()
{
head = nul|;
}
[/ other nethods renoved ...
}
Lattice.java

package ExamlLatti ce;

public class Lattice inplenents LattVal ues

{

/**

* The (integer) time horizon
*/

public int timeHorizon;

/**
* The array of LattList objects that represents the PDAG
* nodes[i] is a linked list of lattice nodes with tinme val ue
*/
public LattList nodes[];
/**
* Constructs an enpty lattice
*/
public Lattice(int T)

//details renpved

}

/**
* Cenerates the lattice to the tine horizon
*/

voi d Ceneratelattice()

//details renpved

LattValues.java

package ExamlLattice

public interface LattVal ues

{

/**
* The (int) nunber of
*/

public final static int

/**
* The (int) nunmber of
*/

public final static int

assets nmodel ed by the lattice

NUM_ASSETS = 3;

aux_processes

NUM_AUX_PROCESSES = 4;

