
46-935 Homework Assignment #1

Short Answer (25 points total):

1. Java technology spans several levels. Java source code is the high level closest to
the developer; at the lowest level machine level code is executed by the processor
on the machine that is running a Java program. Give a description of how Java
source code is transformed into machine level instructions. Which intermediate
levels are platform independent, and which are tied to specific platform choices?

2. What is an exception? Describe Java’s approach to exception handling. What
does it mean to catch an exception? to throw an exception? Why might you want
to define your own exception class?

3. What is an interface? Why might you use an interface? How does an abstract
class differ from an interface?

4. What is the difference between a Java object reference and a C++ pointer to an
object? Why do you think the architects of Java chose not to include pointers in
the Java language?

Programming (75 points total):

Download the source files from the Assign1 handout directory via FTP
(/afs/andrew/course/46/935/handout/Assign1) or download the zip file from the 46-935
web page. Make sure to download all of the files.

The source files are a Java implementation of the extensible program for pricing options
on a probabilistic directed acyclic graph that was studied in the previous course (46-927).
You should begin by examining the Java source code. The Java classes should be very
similar to the C++ classes you worked with during the last mini. Familiarize yourself with
the code and think about any important differences that you notice in the Java
implementation.

Note: This course will build upon the material covered in 46-927. If you did not take 46-
927, please examine Sections 2 and 3 of the 46-927 course notes as well as the code
distributed with 46-927 Assignments #2 and #3. This material is available off of the 46-
927 course web page: http://www.andrew.cmu.edu/course/46-927. If you have further
questions, please contact the TA or course instructor.

Part 1 (50 points):

Your first programming task will be to carry over some of the extensions you made to the
C++ implementation last mini to the new Java implementation. This familiar assignment
should help you get up to speed working in the Java environment.

Specifically, you must implement the LookBackOption, GeometricCallOption, and
AsianCallOption classes. In addition, you must fill in the calc_american_option()
method in the AbstractOption class.

Recall that the LookBackOption, GeometricCallOption, and AsianCallOption classes
extend the AbstractOption class to implement their particular kind of option as defined in
Section 3.1 of the 46-927 course notes.

Recall that calc_american_option() will calculate an option on a PDAG using the
American method (where payoff can be computed at any node). Your function should be
very similar to the existing calc_european_option(). Refer to Section 3.3 of the 46-927
course notes for information on calculating an American option.

Part 2 (25 points):

The second programming task will be to improve the efficiency of the Option Calculator
program. Recall that we represent an option lattice as an array of linked list objects
(where nodes[i] contains all the nodes in the PDAG for time value i). The option lattices
we represent are often recombining (two different nodes at time t may share a successor at
time t+1). To take advantage of this recombining, each linked list only contains the nodes
with unique data elements (nodes with duplicate data are not inserted).

Examine the Insert(KeyInterface k) method of the LinkList class and underlying
InsertElement(KeyInterface k) method of the Node class. These methods implement
unique insertion into a linked list (where duplicate keys are not inserted in the list). Notice
that the algorithm employed by these methods is inefficient. A search for a node with
equivalent data is done through all elements of the linked list with each insertion.
Assuming that such a node is already in the list, this algorithm will have an average
running time of (n/2) where n is the number of elements in the list. If the node is not
already in the list, the running time will be simply n.

This algorithm could be improved by using a binary search tree. In a binary search tree,
each node in a tree has references to left and right subtrees. In its most common form, the
left subtree is filled with nodes that are “less than” the parent node, while the right subtree
is filled with nodes that are “greater than” the parent node. Assuming a reasonably
balanced tree, this invariant makes searching the tree for an item take an average of log(n)
comparisons. Think about why!

Your task will be reduce the average running time of the unique insertion algorithm to
log(n) using a binary search tree ON TOP of the existing linked list. In addition to
keeping a linked list of nodes, we will maintain a binary search tree. You will fill in the
methods in the BSTNode class. The BSTNode class is an extension of the Node class and
inherits its data members and methods. You will override the InsertElement() method to
make it more efficient (by using the left and right subtree pointers to search through the
nodes). Remember that if a node is unique, in addition to adding it to the linked list (using
InsertAfter() or equivalent) you must update the binary tree.

The BSTList class has already been filled in for you. When you are confident in your
BSTNode class, change the PDAG representation in the AbstractOption class to use
BSTList objects instead of LinkList objects.

Notice how little code we had to write to change the underlying representation of the list
to use a binary search tree. This is the power of inheritance and good program design!!

Handin Procedure:

Pittsburgh/NY: FTP the modified source files and a document (txt, rtf, or doc) containing
your answers to the written questions to the course handin directory (where userid is your
andrew user id):

/afs/andrew/course/46/935/handin/userid/

London: Email the modified source files and a document (txt, rtf, or doc) containing your
answers to jeffreys@andrew.cmu.edu AND pavani@andrew.cmu.edu.

