MSCF 46-699 – Object Oriented Programming

Programming Project # 2 – Summer Mini I

Due : June 2 , 1999 at midnight EDT

Project Description : (Elevator Control System)

The purpose of this program is to learn how to use classes and objects to simulate an elevator control system. You are given the file elevator.cpp which contains all the declarations and implementations of elevator class and passenger class. Of course we could make 4 files out of this, elevator.h, elevator.cpp , passenger.h, and passenger.cpp.

What is an Elevator Control System(ECS)? In this project we simulate a real elevator control system with 8 floors and 20 passengers. The ECS maintains a global array to receive all passenger requests for service. Each elevator maintains an internal array showing its passenger requests. Also each elevator maintains its customer list. When passengers are created their status is set to waiting. Once on the elevator their status changes to onBoard and once the elevator reaches the destination floor, passenger status is changed to served. Each elevator goes through 3 steps, move to next service requested floor, dropoff passengers(if any) and pick up any passengers (if any). Elevators only pick up passengers who wants to move in the current direction. If no passengers on the elevator, it can decide whom to pick up (criteria given below).

We define two classes

class Elevator {

 friend class Passenger;

 enum direction {up,down,idle} ;

 public :

 Elevator();

// default constructor

 Elevator(short id, short floor);

// specific constructor

 short getFloor() const;

 // returns the current floor

 void showStatus(ofstream &);

// returns the current elevator floor and direction to outfile

 void pickPassengers(Passenger []);

// pick passengers from the passenger array

 void moveToNextFloor();

// moves to the next floor (details below)

 void dropPassengers(Passenger []);

// Drop the passengers and change their status

 private:

 short currentFloor;

// stores current floor number

 short currentPassengers;

 // stores current passenger total

 short id;

 // stores elevator ID

 direction direct;

 // Elevator direction

 bool floorList[MaxFloors];

// internal floor list array - keeps track of floorlist for people on the Elevator

 bool passengerList[MaxPassengers];

// ID's of the passengers who are on the elevator

};

// PASSENGER CLASS

class Passenger{

 friend class Elevator;

enum status {waiting, onBoard, served};

 public :

 Passenger(){};

// default constructor (not implemented)

 Passenger(int id, short origin, short destination);

// specific constructor

 void SetPassenger(int id, short origin, short destination);
// changes passenger status

 void callElevator();

// calls the closest elevator

 void ShowStatus(ofstream &) const;
// shows the status of the passenger (which elevator, floor, direction)

 void FloorNum() const;

// returns current floor number of the passenger

 private:

 int id;

// passenger ID

 short elevator;

// ID of passenger elevator

 short origin;

// origin floor

 short destination;

// destination floor

 Elevator::direction direct;

// passenger direction

 status myStatus ;

// passenger status

 static int passengerCount;

// static passenger count, keeps track of the global passenger count

};

How the current program works.

1. It creates 3 elevators and put them on random floors

2. It creates 20 passengers with unique id's and put them on random floors

3. Program shows the initial status of elevators and passengers

4. Program moves elevators(in order) to next floor where service was requested

5. Elevators pick up passengers from those floors (if any)

6. Program shows the current status of the elevators

TASK ONE : What you need to do

1. After picking the passengers, move the elevators to the next floor

2. Drop the passengers off to that floor (if any)

3. Pick the passengers from that floor (if any)

4. Do 1,2,3 for all 3 elevators until no more passengers. Program will terminate at

this point. Check project2.out to make sure things worked out OK

5. Imporve pickPassengers procedure to do the following. If elevator has no passengers

determine the maximum number of passengers waiting on that floor in up or down

direction. Pick up the group with the most number. If there is a tie pick the group

wanting to go up. Note that current pickPassenger algorithm determines(in the case

of no passengers on the elevator) the direction based on the passenger with the

least id waiting on that floor.

EXTRA TASK(optional): Need Extra Credit?

1. Create passengers dynamically (20 initially and then 2 after every iteration

one iteration means - move(Task One-1), drop(Task One-2), pick(Task One-3) for

all three elevators

2. Use an internal linked list to keep the current passengers for each elevator

3. You must destroy the node after passenger gets off

4. One iteration means - move, drop, pick, for 3 elevators and create 2 random

passengers with unique id's

[image: image1.wmf]
ANY BUGS?

Please let me know as soon as possible. I will notify everyone. As with any program I write I make no claims as to the correctness of the program. But as a good programmer, I always assume my program is 99% correct (That’s good enough for me. Can you do better?)

� EMBED MS_ClipArt_Gallery ���

[image: image2.wmf]_989226177

