Systems Analysis and Design

45-878

Object Oriented Analysis

Tips on Using the OMT Model on System Architect

The following tips are for drawing object models in System Architect. You will be using the OMT Object Model diagram for drawing these object models. You need to follow the same procedures as you did for DFDs and the same conventions about Project1 and Project2 hold in this case. The OMT object model diagrams offer the options of using aggregation, generalization and inheritance that you will use in the 2nd Systems Model assignment.

Note: The drawing conventions for aggregation and generalization in the textbook (Hoffer, George and Valacich) differ from the conventions followed in the OMT model. Therefore, you need to use the convention provided for aggregation and generalization in System Architect in your System Model 2 assignment. This is a discrepancy that will hopefully be fixed in future releases of the software.

1. The OMT bar buttons perform the following functions.

1.1 Arrow. Disables other options.

1.2 Generalization Line. Use to relate and abstract class to a regular class

(inheritance).

2.1 Association. Use to indicate instance connections or whole-part structures. There in no need to indicate a name in these symbols.

2.2 Instantiation.

3.1 Class. Describes all kind of classes.

3.2 Object. Describes an object instance.

4.1 Ternary association.

4.2 Link Attribute.

5.1 Text.

5.2 Rectangle.

6.1 Doc Block. Documentation Block.

You will be using generalization, associations and classes for System Model 2.

2. Attribute definition

The attributes of the classes are just names with no definition associated with them. To have a definition, a data element must be linked to them. For instance, the attribute name of the class client would have no type until we link a data element with the type string associated. As in the DFD assignment, the data elements have to be defined for every attribute.

Thus, every attribute definition should always be matched with a data element definition. This matching can be performed in one of the two ways described below:

· Type the name of the attribute in the class window. Define the data element independently by using the Definition: Add: Data Element menu option. Then, go to the class window again and include the data type for the attribute.

· Define Data Elements in the dictionary (Definition: Add: Data element). Using data elements already defined, "drag and drop" the data element in the class window. The attribute will be defined automatically and linked to the data element.

Note: There is a second window for attribute definition. It is used to give SA the details of the C / C++ generation code. If you do not specify the "C storage type", SA will set the default to Unknown. For the assignment, you can either leave the Unknown description or change it by editing the field in the second window.

3. Definition of Methods

Generally, most classes have methods defined to conduct basic tasks like creation of an instance, modification of an instance and deletion of an instance of an object. Typically, classes also will have some methods that define transformations on their attributes. For example, "calculate age from birthdate" is a method that uses the existent birth-date attribute. Methods also include messages but the OMT diagrams do not include tools for showing messages between classes. Therefore, you will not be required to show messages in the System Model.

The methods included in an object have to be defined in the same manner as the data elements. The classes definition includes a sub-window for operations / methods to be used in that class. The method definition also includes a description sub-window where you can describe the working of the method using Structured English. Any explicit use of messages can be described in this manner using Structured English. For instance, assume that you have two classes: Invoice and Client.

INVOICE
CLIENT

Attributes

Number

Discount

Total Amount
Attributes

Number

Name

Address

Phone

Methods
Add

Delete

Update

Print
Methods

Add

Delete

update

GiveData

Class Invoice has a method called Print. Client has a method called GiveData. Invoice.Print needs the details of Client in order to print the method Client.GiveData. Thus, to describe a message, the code or Structured English of Invoice.Print has to include a call to Client.GiveData.

4. Support

You may contact Anand Gopal (8-7421) with questions or clarifications on the OMT model. There will be 2-hour blocks of time reserved in the ELC cluster when the TA will be available to answer questions on the Object model and these will be posted on the course web page.

Object Model: An Example

The following is a description of an invoice system. A simple OO system for this description is shown. The object model is drawn using the convention followed in System Architect.

The Invoice System should support the following data:

1. Sets of clients, products and invoices.

2. For clients, attributes of name, address, and allowance (amount of currency allowed to the client).

3. For products, attributes of id, name, price and status (available, sold out, deleted).

4. For invoices, attributes of the client to whom the invoice is issued, the discount associated with the invoice, and the set of lines of the invoice (once for each product being invoiced for).

5. For a line, there are attributes of the unit price of the product, the product, and the number of units.

Every attribute of the class client should have a data-element associated.

The system is required to perform at least the following process:

1. Create, modify and query a client.

2. Create, modify and query a product.

3. Create, modify and print an invoice.

Your diagram should look like this:

[image: image1.wmf]Client

name

. name

address

. address

allowance

. allowance

create

modify

Product

id

name

. name

price

status

Create

modify

query

line

Product

UnitPrice

NumberOfUnits

Create

modify

Giveline

Invoice

client

discount

create

modify

print

1+

1+

