Trading and Intro to TS

Goals:

- basic trading terminology
- Explain Law of One Price, and Arbitrage
- Calculate a replicating portfolio of bonds
- Explain relationship: Arbitrage and Replication
- Spot Rates
- Forward Rates

OTC Market

- dealer market w/out centralized order flow
- NASDAQ: largest
- Scandal?
- Stocks, bonds, and some derivatives

- Commission: paid to broker
- spread: cost of trading with dealer
 - bid: dealer buys
 - ask: dealer sells

- Maximum margin
 - currently 50%
 - set by Fed
- Maintenance margin
 - minimum equity margin can be
- margin call:

Investment Analysis

Yahoo	\$70
50%	Initial Margin
40%	Maintenance Margin
1000	Shares purchased
Initial Positio	n
Stock	70,000
Borrowed	\$35,000
Equity	\$35,000

Maintenance Margin

- Stock Price falls to \$60 per share
- New position:
 - Stock \$60,000
 - Borrowed \$35,000
 - Equity \$25,000
- Margin = 25,000/60,000 = 41.67%
- Margin call: margin must drop to 40%. How much should price drop?

- Relationship between COUGARS and coupon bonds?
- How much value was created in the COUGARS offering? Where did the value come from?

Investment Analysis

14

Bond Cash Flows

Pure discount bond, 3 year maturity with 1\$ face value:

- t: 0 1 2 3
- $Cash: \qquad 0 \quad 0 \quad 1$

 b_3 the bond price at t = 0.

Short sale:

Coupon bond with 3 year maturity, Face = 100\$, coupon rate = c%

t:	0	1	2	3
Cash:		c	c	100 + c

If the bond price were B_3 and you purchased:

t: 0 1 2 3
Cash:
$$-B_3$$
 c c $100 + c$

Short Sale:

t: 0 1 2 3
Cash:
$$B_3$$
 -c -c -(100 + c)

	How to Replicate					
Can we make	a 3 year coupo: t:	n bond 0	out	of F	2DBs? 3	
-	coupon bond	$-B_{3}$	c	c	100 + c	
-	PD_1	$-b_{1}$	1	0	0	
	PD_2	$-b_{2}$	0	1	0	
	PD_3	$-b_3$	0	0	1	
So if you buy:						
• c units of	PDB_1					
• c units of PDB_2						
• $100 + c$ ur	nits of PDB_3					

Arbitrage and Replication

Suppose $B_3 < cb_1 + cb_2 + (100 + c)b_3$. To take advantage:

buy 1 coupon bond	$-B_{3}$	c	c	100 + c		
sell $c \ PDB_1$	cb_1	-c	0	0		
sell $c \ PDB_2$	cb_2	0	-c	0		
sell $100 + c \ PDB_3$	$(100 + c)b_3$	0	0	-(100 + c)		
Net	$[cb_1 + cb_2$	0	0	0		
$+(100+c)b_3 - B_3]$						
By assumption						
$cb_1 + cb_2 + (100 + c)b_3 - B_3 > 0$						

- Law of One Price: same payoffs \implies same price
- Replication: *PDB* gives coupons, etc.
- Replication and Arbitrage

Question: No short sales?

Lecture Slides

Investment Analysis

Bond Prices and Interest Rates

 b_1 price of 1 period PDB

Define $r_1 \equiv 1$ year interest rate

$$b_1 = \frac{1}{r_1} \Longrightarrow r_1 = \frac{1}{b_1}$$

 $r_i \equiv i$ year interest rate

$$b_i = \frac{1}{r_i^i} \Longrightarrow r_i = \left(\frac{1}{b_i}\right)^{1/i}$$

Generally, $r_i \neq r_j \implies \mathbf{TERM} \ \mathbf{STRUCTURE}$

bond prices \implies term structure (spot interest rates) Replication argument:

$$P = \sum_{i=1}^{N} b_i c f_i,$$

or,

$$P = \sum_{i=1}^{N} \frac{cf_i}{r_i^i},$$

Lecture Slides

Investment Analysis

Forward Rates

r_i today's rates on *i* period *PDB*'s. Want to arrange borrowing/lending in the *future*.
e.g. meet today to arrange for advance borrowing 100\$ in 1 yr. to be repaid in 2 yrs. Forward Contract

 $_1f_2$

Time:
 0
 1
 2

 Cash:
 0

$$-100$$
 $100_1 f_2$

Rate fixed today: NO RISK

Investment Analysis

NO ARBITRAGE $\implies r_{1 \ 1}f_{2} = r_{2}^{2},$ $_{1}f_{2} = \frac{r_{2}^{2}}{r_{1}}$ r_{i} and b_{i} are related $b_{i} = \frac{1}{r_{i}^{i}}$ $\implies _{1}f_{2} = \frac{b_{1}}{b_{2}}$ Do this for i = 1, 2, ... $r_{2 \ 2}f_{3} = r_{3}^{3} \implies _{2}f_{3} = \frac{r_{3}^{3}}{r_{2}^{2}} = \frac{b_{2}}{b_{3}}$ $_{n}f_{n+1} = \frac{b_{n}}{b_{n+1}} = \frac{r_{n+1}^{n+1}}{r_{n}^{n}}$

Spots and forwards are just interest rates. Can they be < 1? PDB prices *decrease* as the maturity increases.

$$b_n \leq b_m \ n > m$$

Example

$$b_1 = 0.81, \ b_2 = 0.9$$

To take advantage:

	t	0	1	2
	(1) buy PDB_1	-0.81	1	0
	(2) sell PDB_2	0.90	0	-1
	(3) matress from $1-2$	0	-1	1
	Net	0.11	0	0
Arbitrage!				

Lecture Slides

Investment Analysis

Example: Replicating Portfolios, Spots, and Forwards Coupon bond:

M = 5yrs, c = 8%, F = \$1,000.

P = ?

Have the following 10 PDB prices

```
b_1 = 9.346

b_2 = 8.654

b_3 = 7.939

b_4 = 7.217

b_5 = 6.561
```

Investment Analysis

30

Spot Rates $r_1 = \left(\frac{10}{9.346}\right) = 1.07$ $r_2 = \left(\frac{10}{8.654}\right)^{\frac{1}{2}} = 1.075$ $r_3 = \left(\frac{10}{7.939}\right)^{\frac{1}{3}} = 1.08$ $r_4 = \left(\frac{10}{7.217}\right)^{\frac{1}{4}} = 1.085$ $r_5 = \left(\frac{10}{6.561}\right)^{\frac{1}{5}} = 1.088$

Forward Rates						
${}_1f_2 = \frac{(r_2)^2}{r_1}$	Also,	$_1f_2 = \frac{b_1}{b_2}$				
$_{1}f_{2} = \frac{(r_{2})^{2}}{r_{1}} = \frac{(1.075)^{2}}{1.07} = 1.08$		$_{1}f_{2} = \frac{b_{1}}{b_{2}} = \frac{9.346}{8.654} = 1.08$				
$_{2}f_{3} = \frac{(r_{3})^{3}}{(r_{2})^{2}} = \frac{(1.08)^{3}}{(1.075)^{2}} = 1.09$		$_{2}f_{3} = \frac{b_{2}}{b_{3}} = \frac{8.654}{7.939} = 1.09$				
$_{3}f_{4} = \frac{(r_{4})^{4}}{(r_{3})^{3}} = \frac{(1.085)^{4}}{(1.08)^{3}} = 1.10$		$_{3}f_{4} = \frac{b_{3}}{b_{4}} = \frac{7.939}{7.217} = 1.10$				
$_4f_5 = \frac{(r_5)^5}{(r_4)^4} = \frac{(1.088)^5}{(1.085)^4} = 1.10$		$_4f_5 = \frac{b_4}{b_5} = \frac{7.217}{6.561} = 1.10$				

