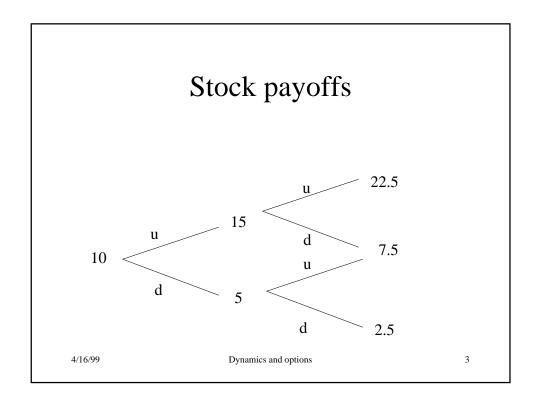
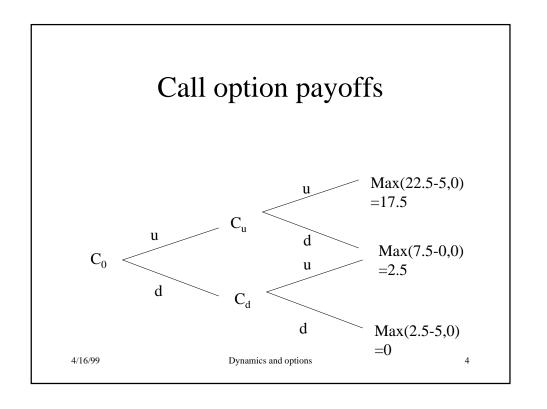
Objectives

- Valuing longer maturity options
 - how
 - hedging
 - implications of strategy
- Dynamic trading strategies
 - buy and hold, constant proportion
 - CPPI

4/16/99

Dynamics and options


1


Valuing multi-period options

- Same basic idea: replicate final payoffs
- Example
 - $-S_0=10$
 - -u=1.5,d=0.5
 - r=1.1 per period
- Value call with 2 periods, X=5

4/16/99

Dynamics and options

Valuation

- Work backwards through tree.
- Replicate option value at each node
- Results
 - strategy of stock and bond with same payoffs as option
 - value of strategy = value of option

4/16/99

Dynamics and options

5

After initial 'u', or C_u

- # shares: α_u , # bonds: β_u bonds
- C_{uu} =17.5, C_{ud} =2.5, S_{uu} =22.5, S_{ud} =7.5, S_{u} =15

uu:
$$\alpha_u 22.5 + \beta_u 1.1 = 17.5$$

ud: $\alpha_u 7.5 + \beta_u 1.1 = 2.5$
 $\rightarrow \alpha_u = 1, \beta_u = -5/1.1$
 $Cost = 15 - 5/1.1 = 10.45 = C_u$

4/16/99

Dynamics and options

After initial 'd'

- # shares: α_d , # bonds: β_d bonds
- C_{du} =2.5, C_{uu} =0, S_{du} =7.5, S_{dd} =2.5, S_{d} =5

du:
$$\alpha_d 7.5 + \beta_d 1.1 = 2.5$$

dd: $\alpha_d 2.5 + \beta_d 1.1 = 0$
 $\rightarrow \alpha_d = 0.5, \beta_d = -1.25/1.1$
Cost = 0.5(5) - 1.25/1.1 = 1.36 = C_d

4/16/99

Dynamics and options

7

Initial value

- Replicate the value of the option in both the 'u' and 'd' states next period
- $C_u=10.45, C_d=1.36, S_u=15, S_d=5, S_0=10$

u:
$$\alpha 15 + \beta 1.1 = 10.45$$

d: $\alpha 5 + \beta 1.1 = 1.36$
 $\rightarrow \alpha = 0.909, \beta = -3.2 / 1.1$
 $Cost = 0.909(10) - 3.2 / 1.1 = 6.2 = C_0$

4/16/99

Dynamics and options

Important points

- Probabilities of 'u' and 'd' don't matter
- 2 securities, but 3 final outcomes for option
 - how can it work?
 - Need #securities greater than or equal to # states
- Dynamic trading

4/16/99

Dynamics and options

9

The positions

- Initial holdings
 - stock: 0.909, bonds -3.2/1.1
- Price rise
 - stock 1, bond -5/1.1
- Price fall
 - stock 0.5, bond -1.25/1.1
- trend chasing?

4/16/99

Dynamics and options

Key Points

- Replication over time
- Probabilities don't matter
- Dynamic trading can make many complicated payoffs
- Valuation technique
- Hedging technique

4/16/99

Dynamics and options

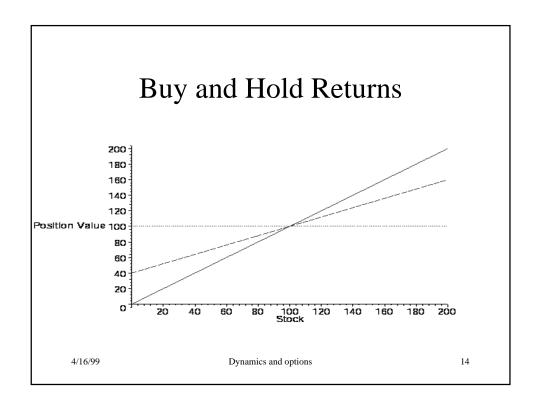
11

Black Scholes

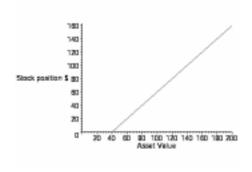
- Same basic model:
- Let time between periods get 'small'
- Parameters
 - risk-free rate
 - stock volatility ('u' and 'd')
 - dividends
 - maturity of option

4/16/99

Dynamics and options


Dynamic trading strategies

- Sharpe and Perold
- Objectives:
 - understand what kind of dynamic strategies you could follow and why?


13

- Mechanics of re-balancing

4/16/99 Dynamics and options

4/16/99 Dynamics and options 15

Constant Mix Strategies

- Invest constant % in risky asset
- Risk tolerance increases in wealth
- Dynamic Strategy
 - you need to trade to maintain the position

4/16/99

Dynamics and options

Example

- Start with \$100
- \$60 in stocks and \$40 in Bills
- want to maintain constant weight

Case	Stock	Stock	Bill	Asset	% in
		Value	Value	Value	Stocks
Initial	\$100	\$60	\$40	\$100	60
Market Drop	\$90	\$54	\$40	\$94	57.4
After re- balancing	\$90	·	\$37.6	\$94	60
Dalarichig	D.	namics and	ontions		

4/16/99

17

Main Points

- Must rebalance to maintain constant weight
- Buy stocks when price falls and vice-versa when stock rises
- Issue of when to trade
 - typical rule: wait for % of price move
 - depends on volatility

4/16/99

Dynamics and options

Comparison: buy and hold and constant proportion

Case	Stock	Stock	Bill	Asset	%
		Value	Value	Value	Stocks
Initial	100	60	40	100	60
Price drop	90	54	40	94	57.4
Rebalance	90	56.4	37.60	94	60
D ala av va al	100	C2 C7	27.60	100 27	C2 F
Rebound	100	62.67	37.60	100.27	62.5
Rebalance	100	60 16	40 11	100.27	60
I/CDalal ICC	100	00.10	70.11	100.27	00

4/16/99

Dynamics and options 19

Main Points

- Flat Volatile markets
 - constant proportion tends to do better
- Trends
 - better with `buy and hold'
- Trading costs?

4/16/99

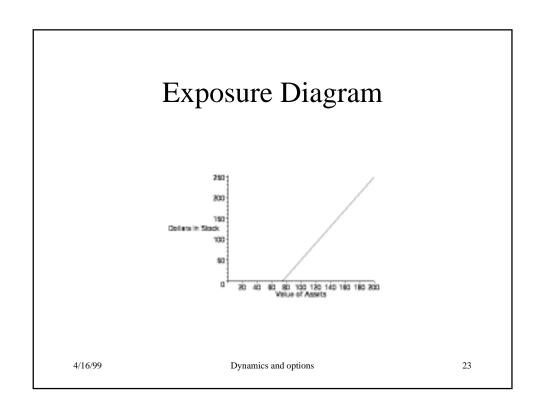
Dynamics and options

Constant Proportion Strategies

- Dollars in stock = m (assets floor)
- m: multiplier
- m > 1: constant proportion portfolio insurance
- Who?

4/16/99

Dynamics and options


21

Example

- \$100 wealth
- \$75 floor
- multiplier of 2
- Initial cushion: 100-75=25
- Investment in stocks = 2(25)=50
- Preferences of investor?

4/16/99

Dynamics and options

Example of Strategy

Case	Mkt Value Stock	Stock Value	Bill Value	Asset Value	Cushi on	% in stock s
Initial	100	50	50	100	25	50
Market Drop	90	45	50	95	20	47.34
Rebalance	90	40	55	95	20	42.11
Drop Rebalance	80 80	35.56 31.12	55 59.44	90.56 90.56	15.56 15.56	
Rebound Rebalance	100 100	37.33 43.54	59.44 53.24		21.77 21.77	38.57 44.98
Rebound Rebalance	120 120	52.28 60.5	53.24 45.5	105.5 105.5	30.5 30.5	49.55 57.35

4/16/99 Dynamics and options

Main Points

- Sell stock in bear
- Buy stock in bull
- Relative to buy and hold
 - gain on downside
 - cost on upside
 - high enough, dominates buy and hold

4/16/99

Dynamics and options

25

What assets?

• Stocks and bonds only?

4/16/99

Dynamics and options

Underlying Assumptions

• When won't this work?

4/16/99 Dynamics and options

Payoff Shape

- Straight line: buy and hold
- Concave: buy stocks as they fall
 - constant mix
- Convex: buy stocks as they rise
 - CPPI and constant mix

4/16/99

Dynamics and options

Summary

- Dynamic replication of options
 - hedging
 - pricing
- Dynamic strategies
 - what kinds and why

4/16/99

Dynamics and options

29

Next Time

- Mean-variance analysis
 - basic assumptions and why?
- Introduction to implementation
- References
 - Text: Chapters 7-9 (brief review)
 - Kritzman on optimization (readings)

4/16/99

Dynamics and options