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The information in complete genome 
sequences1 and the identification and system-
atic cloning of human cDNAs are providing 
us with the challenging opportunity to 
analyse the complexity of biological processes 
on a large scale, with the goal of reaching a 
more complete description of their molecular 
regulation. For this purpose, high-throughput 
techniques — such as protein analysis by mass 
spectrometry, or expression and transcription 
profiling by protein or DNA microarrays 
— have been developed and successfully 
applied to diverse biological questions. 
However, despite their great usefulness, these 
techniques cannot provide adequate temporal 
or spatial resolution and, most importantly, 
they do not directly show whether the identi-
fied molecules have a functional role in the 
cellular process that is under investigation.

Fluorescence-based imaging assays in 
intact living cells overcome these limitations 
because they can probe the function of 
macromolecules in their natural environment 
with exquisite and ever increasing spatial and 
temporal resolution2–4. Fluorescence-imaging 
assays, in principle, also have the potential 
to be applied to large-scale analyses, and 
simple assays have already been applied to 
cell-biological problems in high-throughput 
fluorescence-microscopy experiments5,6. 
Standardized reagents that interfere with 
cellular functions and high-throughput 
transfection methods, such as cell arrays7,8, are 
becoming available. Using these, large-scale 

fluorescence imaging at single-cell or even 
subcellular resolution can be combined with 
genome-wide RNA interference (RNAi) 
approaches9,10, small-molecule-based 
perturbations11 or overexpression strategies8 
to reveal comprehensively the regulatory 
networks that underlie the functions of 
intact cells.

Carrying out functional high-throughput 
microscope-based experiments that can pro-
vide data for such systems-biology questions 
is currently still a challenge. It requires auto-
mation and the precise coordination of vari-
ous steps in an integrated workflow (FIG. 1). In 
this article, we highlight recent developments 
in high-throughput fluorescence microscopy 
and focus on future requirements for imag-
ing and image analysis, which are currently 
two of the most important areas of new 
technology development.

Assays: live cells are the future
The key to any high-throughput fluorescence-
microscopy approach is the development 
of an appropriate imaging assay that spe-
cifically reads out the biological function 
of interest and is robust enough to provide 
reproducible, quantitative data using high-
throughput image acquisition and analysis. 
Large-scale projects using high-throughput 
microscopy that have been reported so far 
almost exclusively used fixed-cell assays (see, 
for example, BOX 1 for a detailed example). 
Unfortunately, such endpoint experiments 

do not provide any temporal information 
and results might be misinterpreted if, for 
example, the final state of the examined cells 
is an indirect consequence of a number of 
sequentially occurring events. Experiments 
using live-cell assays (for example, REF. 10) 
and high-throughput time-lapse microscopy 
can overcome this problem, and they provide 
much more detailed phenotypic information 
than fixed-cell assays.

However, the high-throughput automated 
fluorescence imaging of biological processes 
in living cells is currently technically chal-
lenging (see later), and requires robust and 
simple fluorescent labelling techniques. The 
fluorescent reporters need to be specific, 
they must interfere as little as possible with 
the biological process being visualized 
and they must not perturb the global 
physiological conditions of the cells. Most 
importantly, the labelling and detection pro-
cedures have to be quantitative and highly 
reproducible so that different experiments 
that have been carried out at different times 
can be compared, and so that image data can 
be evaluated using an automated phenotypic 
analysis — an absolute requirement for 
large-scale projects (see later). Numerous 
green fluorescent protein (GFP)-based 
protein markers for a vast array of cellular 
functions have been successfully devel-
oped in the past years for manual, single 
live-cell experiments (see, for example, 
REFS 2,4,13–16). Monoclonal cell lines that 
stably express one or more of such proteins 
that are tagged with spectral variants of GFP 
will be one way to develop robust assays for 
high-throughput fluorescence-microscopy 
experiments in living cells. In addition to 
enabling the detection of the dynamic spatial 
distribution of the respective fusion proteins, 
GFP-based reporters have also been the basis 
for more sophisticated assays that monitor 
protein interactions, enzyme activities, pH, 
cyclic AMP or Ca2+ concentrations in living 
cells (reviewed, for example, in REFS 17–19). 
Although such reporters have so far only 
been used in single-cell experiments, they 
have the potential to be used in high-
throughput fluorescence-microscopy experi-
ments once the appropriate hardware and 
software for data acquisition and analysis are 
in place.
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Abstract | In this post-genomic era, we need to define gene function on a genome-
wide scale for model organisms and humans. The fundamental unit of biological 
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genomics experiments, fluorescence microscopy is making the transition to a 
quantitative and high-throughput technology.
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High-throughput imaging
High-throughput fluorescence-microscopy 
experiments comprise at least five independ-
ent steps — sample preparation, image 
acquisition, data handling, image analysis 
and data mining combined with bioinfor-
matic modelling — and these steps need 
to be tightly coordinated to sustain a rapid 
flow of work and data (FIG. 1). Therefore, any 
image-acquisition system that is used for 
large-scale experiments has to meet require-
ments that are different from those for 
traditional fluorescence microscopes. High-
throughput imaging systems should ideally 
be compatible with many fluorescence-based 
assays and they should be completely 
adapted in terms of both hardware and soft-
ware for fully automated operation.

Several automated fluorescence-micro-
scope-based image-acquisition systems are 
already available on the market (TABLES 1,2). 
However, because such commercial systems 
are often designed and optimized for highly 
specific and/or ultra high-throughput 
applications, they are limited in regards to 
their adaptation to new and more complex 
assays or are difficult to use with live cells. 
To overcome these limitations, commercially 
available high-end microscopes have been 
automated to increase throughput (see, 
for example, REF. 20) and new automated 
systems with an open software architecture 
that allows users to add their own modules 
have been developed (see, for example, 
REF. 21). Only a few applications of high-
throughput microscopy in intact living cells 
using either simple time-lapse transmitted 
light or fluorescence microscopy have been 
reported10 (reviewed in REFS 11,12). This 
is due to the fact that the high-throughput 
imaging of living cells, although much 
more powerful compared to work in fixed 
cells, is still a demanding problem. For 
example, it requires stable temperature and 
tissue-culture conditions on the microscope. 
Furthermore, if the different samples in a 
multi-well dish or cell microarray are imaged 
in a time-resolved manner, either the time 
resolution of each individual live-cell experi-
ment or the sample sizes that can be imaged 
on one microscope becomes limited.

A further drawback of the currently avail-
able high-throughput imaging systems is 
that once the image acquisition has started, 
little or no modification of the experiment 
is possible. This is especially problematic 
for live-cell studies, in which variations 
in the expression levels of the fluorescent 
markers frequently necessitate online image 
analysis so that acquisition parameters can 
be adjusted to optimum levels between the 

capture of images. Similarly, in applica-
tions in which only specialized cells are of 
interest (for example, mitotic cells), online 
analysis of the image data with subsequent 
feedback to image acquisition would enable 
the imaging system to focus the acquisition 
on only those objects of interest. Improving 
and accelerating online image-analysis pro-
cedures and microscope-control hardware is 
necessary to overcome these hurdles. Once 
possible, this would open new avenues for 
much more complex, and more informative, 

automated microscopy strategies with 
high-throughput capabilities. So, it might 
become possible to analyse living cells using 
high-throughput approaches to determine 
intermolecular interactions using fluores-
cence resonance energy transfer (FRET)17,22 
techniques, or molecule dynamics using 
fluorescence recovery after photobleaching 
(FRAP)23–25 or fluorescence correlation 
spectroscopy (FCS)26,27 (FIG. 1). These 
imaging techniques have been shown to be 
extremely powerful in combination with 

Figure 1 | The steps in a high-throughput fluorescence-microscopy experiment. a | Sample 
preparation, including cell transfection and fluorescent labelling for imaging, is typically conducted 
in multi-well dishes using robotics (see, for example, REF. 9) or transfected cell microarrays39. b | Image 
acquisition for samples in fixed or living cells is carried out using automated microscopes (see TABLE 1 
for a selection of commercially available systems). Images can be acquired in different modes, for 
example, in multicolour, in three dimensions (3D), using time-lapse techniques, by detecting fluores-
cence resonance energy transfer (FRET), by detecting fluorescence recovery after photobleaching 
(FRAP), or by using fluorescence correlation spectroscopy (FCS). c | Image data can easily exceed 
several terabytes and therefore require specialized software and hardware for data handling. 
d | Central to this approach is automated image analysis, which needs to be developed or adjusted for 
each assay system and is currently one of the biggest challenges in this field. e | Last, data are inte-
grated and mined to formulate models of the system under investigation. Dashed lines indicate 
interactions that are not presently implemented in high-throughput fluorescence microscopy. 
Developments along these lines will considerably improve the technology in the future. CFP, cyan 
fluorescent protein; YFP, yellow fluorescent protein. 
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GFP technology in single-cell experiments 
because they provide quantitative data on the 
dynamics of biochemical reactions in living 
cells2,15,17. However, none of them have so far 
been successfully applied to more systematic 
studies using high-throughput microscopy.

Image analysis
High-throughput fluorescence microscopy 
quickly generates large amounts of digital 
image data from standardized live-cell or 
fixed-cell imaging assays. Genome-wide 
RNAi screens, for example, in which several 
images or movie sequences are acquired 
to document the phenotype for each sup-
pressed gene in a genome generate from 
several tens of thousands to up to millions 

of images in a single screen. To handle 
such volumes of data (up to several tens of 
terabytes), high-throughput imaging experi-
ments have to be coupled to automatic, 
computerized image-processing methods to 
score the assay and to annotate the data in a 
truly quantitative and unbiased fashion. The 
result of the image analysis is a numerical 
profile of the assay, which can be as simple 
as a ratio of the measurements acquired in 
two different channels (BOX 1; FIG. 2) or as 
complex as a detailed phenotypic signature 
(see later; FIG. 3). Image processing delivers 
standardized parameters that are amenable 
to thorough statistical evaluation and further 
bioinformatic analysis and modelling, an 
essential property for use in systems biology. 

Also, automatic phenotyping relieves a 
bottleneck in high-throughput microscopy 
because automated microscopes can 
generate data at a much higher rate than it 
can be annotated and evaluated manually. 
Currently, automated image processing for 
high-throughput data sets is in its infancy, 
and for kinetic data from living cells, in 
particular, almost no suitable tools exist. 
Consequently, we foresee much further 
development in this area, including, as a 
first step, making existing algorithms com-
putationally much more efficient to allow 
the processing of large-scale data sets in a 
reasonable time. In general, on the basis of 
existing concepts from single-cell experi-
ments, automated image-processing routines 
for high-throughput images can be divided 
into the three steps that are outlined below.

Pre-processing. The first task of image 
processing is to find the biological object(s) 
of interest in an image, which can contain 
one or many cells. Depending on the cellular 
assay, the object of interest could be the 
whole cell or subcellular organelles/struc-
tures that are labelled with an appropriate 
fluorescence marker (BOX 1). Pre-processing 
methods are well developed for single-image 
processing and they can involve the filtering 
of noise and the normalization of intensities. 
They typically end with a segmentation step, 
in which the boundaries of the object(s) of 
interest are defined (FIGS 2,3).

Quantitative analysis and classification. 
After the objects have been segmented, they 
need to be analysed according to the needs 
of the high-throughput imaging assay. For 
each image in the fixed-cell assay that is 
described in BOX 1, it was sufficient just to 
identify the cells that were expressing cyan 
fluorescent protein above a certain intensity 
and then to calculate the relative amount of 
marker-protein secretion by dividing the sig-
nals from two further fluorescence channels 
(FIG. 2). Such straightforward intensity-based 
ratio measurements are robust and quantita-
tive, and can be used for various functional 
assays.

In the more complex case of a live-cell 
phenotypic assay to identify new gene 
functions (FIG. 3), cells have to be classified 
into relevant phenotypic categories — for 
example, ‘dead cell’, ‘live cell’, ‘mitotic cell’ 
or ‘interphase cell’. Although methods for 
recognizing cellular morphologies in single 
images have been reported28,29, they are not 
yet commonly applied to large-scale data, 
and the pattern recognition of cellular mor-
phologies, with all of their inherent biological 

Box 1 | Assays for high-throughput fluorescence microscopy

Assays for high-throughput fluorescence imaging need to be designed in such a way that sample 
preparation on a large scale can be done automatically, image acquisition is fast and quantitative, 
and image data can be analysed automatically. Along these lines, several assays have been 
developed in recent years for small-compound screening projects (reviewed in REFS 12,36,37). 
Only very recently have assays been developed and successfully applied in medium-to-large-size 
microscopy screening applications to identify genes that are involved in key cellular processes (see, 
for example, REF. 9). Here, we describe one representative assay in fixed cells that we used to 
screen a library of fluorescently-tagged cDNAs for a function in protein secretion using an 
overexpression approach in mammalian cells8 (see figure).

Cells were transfected with cyan fluorescent protein (CFP)-tagged cDNAs from the library. After 
32 hours, these cells were infected with adenovirus that encoded a yellow fluorescent protein 
(YFP)-tagged temperature-sensitive mutant of the vesicular stomatitis virus G protein (ts-O45-G)38 
— a marker of membrane transport through the secretory pathway. The cells were then incubated 
at the restrictive temperature of 39.5˚C, so that ts-O45-G–YFP accumulated in the endoplasmic 
reticulum. After a further 16 hours, the temperature was shifted to the permissive temperature of 
32.0˚C to induce the transport of ts-O45-G–YFP to the plasma membrane, where it was detected 
following fixation by immunostaining using a fluorescently (Cy5) labelled monoclonal antibody 
(α-VG). So, the relative amount of total ts-O45-G–YFP that was transported to the plasma 
membrane could be determined by calculating the ratio of the Cy5-labelled antibody and the YFP 
signals (see also FIG. 2). Measuring transport to the plasma membrane on the basis of the Cy5/YFP 
signal ratio makes this assay robust, and errors that occur during image acquisition — such as minor 
focus shifts or variations in the expression of the transport marker — are compensated for because 
these shifts occur equally for both of the signals. This assay can be used with minor modifications to 
score for the effects of protein suppression by RNA interference or inhibition by small molecules. 
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cell-to-cell variability, is still in its infancy. 
A classification decision can be simple, 
for example, if it is based on the size or the 
fluorescence intensity of the object, but it can 
also be more complex if many or only subtly 
different classes have to be recognized. When 
many or subtly different classes must be 
recognized, a useful approach is to extract a 
long list of numerical parameters, or ‘features’, 
that describe the shape and texture, as well 
as other derived characteristics such as the 
pixel-intensity statistics, of each object. The 
software then computes a collection, or ‘vec-
tor’, of values for each object that can be based 
on several hundreds of different features28,30.

On the basis of these feature vectors, a 
classification algorithm can be trained to 
discriminate between phenotypes. This train-
ing is based on manually annotated images 
that contain many example objects for each 
phenotypic class. The software then system-
atically selects the most powerful features that 
together discriminate between the different 
classes, and it determines boundaries for 
feature values that allow a decision to be 
made. In our experience, such feature-based 
classification systems can reach high accura-
cies that are comparable to those of human 
annotators for single static images. However, 
an inherent problem is that such classifiers 
that are obtained by supervised learning only 
recognize phenotypes that they were trained 
to recognize and therefore require retraining 
if novel phenotypes arise in an experiment. 
Developing software that automatically learns 
and defines new classes with similar feature 
properties would represent a big step forward 
for this powerful approach, and this is now 
feasible because large-scale data sets of suf-
ficient quality are becoming available.

Analysing movies: tracking and more. For 
live-cell high-throughput assays, the classifica-
tion of single images should ideally not be the 
only step in the analysis because it ignores 
the large amount of kinetic information that 
is contained in time-resolved data. As there 
are so far almost no time-resolved large-scale 
data sets, there are even fewer suitable analy-
sis tools for large-scale kinetic imaging data. 
To make use of temporal information about 
individual cells or subcellular organelles, 
these structures have to be connected or 
‘tracked’ throughout all of the single frames of 
a movie. Similar to pre-processing, tracking 
algorithms are well established for single-cell 
experiments, but they have not been adapted 
or used for high-throughput data. Tracking 
can work directly on the segmented images, 
and it will connect objects in time on the 
basis of criteria such as the speed of motion, 

the shape of the trajectory and the possibil-
ity of the objects splitting (cell division) or 
merging (cell fusion). Once tracks have been 
computed using an appropriate algorithm, 
the tracks and object classification can be 
combined to yield a powerful description of 
the phenotypic evolution of cells. For exam-
ple, tracking can aid classification decisions 
by looking at the history of a particular cell 
(a cell that was classified as ‘dead’ is unlikely 
to become ‘live’ again at a later time) and, 
vice versa, the correct classification can aid 
tracking (if two different cells are as likely to 
be connected by a tracking algorithm to a 
cell in a preceding image, the more similarly 
classified cell will be chosen). Tracking is only 
one way of processing time-resolved image 
data sets. Time adds another dimension to 
multidimensional spatial images, so many 
spatial algorithms, such as noise filtering or 
interpolating between the edges of objects to 
create three-dimensional boundaries, can also 
be applied in time. This is an important area 
for future innovative developments in image 
processing.

In its entirety, advanced image process-
ing allows the automatic and quantitative 
scoring of high-throughput imaging assays 
and is therefore an integral part of assay 
development. Importantly, image process-
ing has become sufficiently powerful in 
recognizing cells of interest such that it also 
has the potential to replace human involve-
ment in carrying out complex experiments 
or in providing online feedback regarding 
the way in which images are acquired dur-
ing large-scale experiments. Although this 
has not yet been accomplished, it holds the 
promise of making automated microscopes 
that are as versatile and powerful as an expe-
rienced microscopist. For example, rather 
than tracking cells after a movie is acquired, 
the cell of interest can be located by image 
processing after each frame of a movie 
is taken, and the spatial information can 
then be used to move the stage of the fully 
motorized microscope so that the cell will be 
perfectly centred in the next image20. With 
the appropriate microscope, a cell could not 
only be centred, but, once identified, a FRET 

Table 1 | Selection of commercial high-throughput microscope systems

Name of 
instrument

Manufacturer* Microscope features Applicable to 
live-cell imaging? 

IN Cell Analyzer 3000 GE Healthcare Laser-scanning confocal Yes

Opera Evotec Technologies Nipkow-disk confocal No

Pathway HT BD Biosciences Nipkow-disk confocal Yes

Scan^R Olympus Widefield Yes

KineticScan Cellomics Widefield Yes

ArrayScan Cellomics Widefield No

Discovery-1 Molecular Devices Widefield No

ImageXpress Molecular Devices Widefield No

cellWoRx Applied Precision Widefield No

Acumen Explorer TTP LabTech Laser-scanning 
non-confocal

No

iCyte CompuCyte Laser-scanning 
non-confocal

No

Cell Lab IC 100 Beckman Coulter Widefield No
*See the Manufacturer information for links to the manufacturers. In laser-scanning microscopes, a single laser spot 
scans the specimen to generate an image. In Nipkow-disk microscopes, multiple spots scan the specimen in parallel, 
which allows faster image-acquisition rates. Confocal systems achieve optical sectioning using the confocal 
principle (for more details, see REF. 40). Widefield and non-confocal microscopes illuminate the entire specimen at 
once and do not produce optical sections.

Table 2 | Selection of image-analysis software

Name of software Manufacturer* Applicable to high-throughout imaging? 

Cellenger Definiens Yes

Cell Profiler Open source Yes

BioConductor Open source Yes
*See the Manufacturer information for a link to the manufacturer (open source is publicly available code). Cellenger 
and Cell Profiler have both been used in high-throughput imaging studies (see REFS 9,41, respectively), whereas 
BioConductor remains to be applied.
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measurement could be taken, a short FCS 
trace could be acquired to measure diffusion 
or a FRAP experiment could be carried out 
to study protein dynamics — all in a fully 
automated and high-throughput mode. We 
speculate that such ‘intelligent microscopes’ 
will become more and more powerful in the 
years to come.

Data mining and quality control
The results of image analysis are derived 
from a single experiment — for example, a 
single RNAi gene knockdown, gene overex-
pression or inhibitor treatment — in a large-
scale data set that is generated from many 
(tens of thousands) of such experiments. 
The parameters that are computed by image 
analysis can come from many cells in single 
or numerous static images per experiment, or 
even from time-resolved three-dimensional 
data in live-cell assays. The data mining of 
these parameters has two functions.

First, it should allow a decision to be 
made about whether a particular experiment 
scored as a ‘hit’ in the assay used. This is 
determined by comparing the results of the 
experiment with those from internal nega-
tive control experiments that were carried 
out under the same conditions. If the results 
of the experiment are different to those for 
the negative controls in a statistically signifi-
cant way, the experiment scores in the assay. 
It is very important to use an appropriate 
statistical evaluation because parameters that 
are derived from processing live-cell images 
can be noisy and multidimensional. Hits can 
either simply be flagged for further analysis 
or ranked according to their difference from 
the controls.

The second function of data mining is 
that it allows a quantitative comparison of 
all of the experiments in a high-throughput 
data set. This is achieved by assembling 
all of the measured significant differences 

from the control experiments into a com-
prehensive quantitative signature, which 
is also referred to as a ‘profile’ or ‘pheno-
print’31 of each experiment. The phenoprint 
consists of at least one parameter (for 
example, the relative transport ratio for the 
secretion assay; BOX 1; FIG. 2) but can com-
prise a panel of parameters (for example, 
different biological classes for phenotyping; 
FIG. 3). These parameters can be used to 
compare and cluster experiments on the 
basis of similarities. Similar to expression 
profiling, phenoprints for many experi-
ments can be visually displayed as heat 
maps (FIG. 3), which immediately reveal 
similarities between experiments.

In addition to scoring and phenoprinting 
experiments, data mining has an equally 
important function in the quality control 
of high-throughput imaging experiments. 
Automatically generated data only deliver 
useful information if the quality of each 

Figure 2 | Image analysis of high-throughput image data from fixed 
cells. The multichannel immunofluorescence data from the secretion assay 
described in BOX 1 are shown. In this assay, a library of fluorescently-tagged 
cDNAs was screened for a function in protein secretion using an overex-
pression approach in fixed mammalian cells. Raw data were first segmented 
in the DAPI channel to identify single cells by their nuclei (DAPI stains DNA), 
and an area around the nucleus was defined as cytoplasm belonging to each 
cell. On the basis of the intensity of an overexpressed cyan fluorescent 
protein (CFP)-tagged cDNA, a cell of interest was chosen for further analysis 
(marked by asterisks). The mean CFP intensity above the background in the 
combined nuclear and cytoplasmic area is a measure of the expression level 
of the cDNA being tested. The mean intensity above the background in the 
combined nuclear and cytoplasmic area for the secretion reporter protein 

ts-O45-G (temperature-sensitive mutant of the vesicular stomatitis virus 
G protein) was detected at the plasma membrane by a fluorescently labelled 
monoclonal antibody (α-VG–Cy5). To calculate the relative amount of pro-
tein that had been transported to the plasma membrane, this intensity was 
divided by the mean above background intensity in the cytoplasmic area of 
the cellular yellow fluorescent protein (YFP)-tagged ts-O45-G protein that 
was detected in any cellular compartment. Data for many cells were then 
mined by plotting the relative transport of ts-O45-G versus the relative 
expression level of the cDNA of interest, and this produced a clear correla-
tion between transport inhibition and high expression (the red circle high-
lights a data point from a single cell). Such a cDNA would have been scored 
as a transport inhibitor in this assay. The graph in this figure is reproduced 
with permission from REF. 8 © (2004) Cold Spring Harbor Laboratory Press. 
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experiment is of the highest standard techni-
cally possible. To this end, internal negative 
and positive controls of the cellular assay 
are crucial to define the acceptable standard 
response and reproducibility of the assay. 
Mining the quantitative parameters that 
were generated by the image processing of 
control experiments allows boundaries of 
acceptable assay performance to be set using 
statistical methods and confidence. Only 
this allows us then to accept and score real 
experiments, because the assay has been 
shown to work over the expected dynamic 
range.

Conclusions
High-throughput fluorescence microscopy 
is starting to revolutionize the way we do 
cell biology. Experiments that were typically 
carried out manually in single cells and that 
addressed one gene or protein at a time for 
many months can now be done for whole 
genomes in a matter of days or weeks. 
In addition, more and more advanced 
fluorescence-microscopy techniques will 
become available for high-throughput 
imaging, because image processing can be 
used to make automatic microscopes not 
only high-throughput but also intelligent. 
For example, we predict that defining the 
genes that affect a certain cellular function 
using microscopy-based RNAi screening 
will become a routine experiment for many 
molecular-cell-biology laboratories in the 
next few years. Furthermore, even higher 
content measurements will be developed 
and applied in a high-throughput mode, 

such as the systematic and quantitative 
biophysical characterization of libraries 
of physiologically expressed GFP fusion 
proteins in live cells32,33. Examples of such 
measurements include protein diffusion 
(determined using FRAP and FCS), protein 
interactions (determined using FRET), or 
subcellular localization and concentration 
throughout the cell cycle34 (determined 
using four-dimensional imaging). These 
parameters, if carefully quantified and 
standardized, will constitute the data back-
bone of comprehensive predictive models of 
cell function in systems biology35.

Although it has enormous promise, 
high-throughput imaging still poses serious 
challenges for our future research because 
the required hardware and software are still 
being developed. The transition to living 
cells and truly quantitative large-scale data 
have also not yet happened. Systems-biology 
projects that are based on high-throughput 
imaging will require an interdisciplinary 
team of robotics and optics engineers, cell 
biologists, image-processing specialists, 
bioinformaticians and statisticians. There is 
a strong need for the development of intelli-
gent, more automated and sensitive imaging 
equipment as well as image-analysis 
and experiment-control software. There 
are also increasing IT and bioinformatics 
demands for data management and analysis. 
Producing, handling and storing many tera-
bytes of data require image databases, for 
which there are currently no suitable solu-
tions. Processing millions of single images 
with computation-intensive algorithms is 

currently only feasible on computer clusters 
and therefore requires access to an advanced 
IT infrastructure. At the same time, com-
paring several large-scale experiments will 
require standardized data and annotation 
formats that the community needs to 
develop.

In our opinion, one of the exciting per-
spectives for high-throughput imaging is 
that we will be able to carry out large-scale 
and high-content cell-based assays rapidly 
enough to allow different large-scale 
perturbation approaches to be combined 
to create powerful and comprehensive 
tools for functional genomics approaches. 
One example is to use the overexpression 
of genome-coverage cDNA libraries and 
RNAi screening to achieve comprehensive 
gene discovery in standardized human cell-
culture systems in a manner that is similar 
to the loss- and gain-of-function screens 
that were formerly only possible in truly 
genetic systems such as Saccharomyces 
cerevisiae or Drosophila melanogaster. With 
this being just one of many exciting pos-
sibilities, we predict that high-throughput 
fluorescence microscopy will be a key tech-
nology for systems biology in mammalian 
organisms.
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Figure 3 | Image analysis of high-throughput image data from live 
cells. The figure shows single-channel time-lapse data that were acquired 
in an RNA-interference experiment to screen genes for a role in cell divi-
sion31. Each image in the raw data was segmented to identify individual 
cell nuclei that were labelled by histone–green-fluorescent-protein, and 
each cell was then assigned to a cell-cycle stage using an automatic clas-
sification algorithm. The example shows 3 prometaphase cells (yellow), 
11 interphase cells (green) and 1 pair of anaphase chromosomes (red), as 
well as 1 cell that could not be analysed at the edge of the image (white). 
For all of the images in the time-lapse movie, this yields the percentage of 
cells in the different cell-cycle stages — for example, the index of mitotic 

cells (yellow curve in the mitotic-index plot), which can be plotted over 
time to describe the phenotype kinetics. If the index deviated from control 
experiments (blue, green and purple in the mitotic-index plot), this differ-
ence was plotted in a heat map (scaled from small deviations in blue to 
large deviations in red). The heat map serves to compare deviations in 
different phenotypic classes (columns) for one experiment (row) and to 
compare these phenotypic signatures between different experiments (six 
experiments/rows are shown), which can be clustered by similarity (see 
the dendrogram to the left of the heat map). The two right-hand panels of 
this figure were modified with permission from REF. 31 © (2006) Macmillan 
Magazines Ltd.
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O P I N I O N

Metabolic cycles as an underlying 
basis of biological oscillations
Benjamin P. Tu and Steven L. McKnight

Abstract | The evolutionary origins of periodic phenomena in biology, such as the 
circadian cycle, the hibernation cycle and the sleep–wake cycle, remain a mystery. 
We discuss the concept of temporal compartmentalization of metabolism that 
takes place during such cycles, and suggest that cyclic changes in a cell’s metabolic 
state might be a fundamental driving force for such biological oscillations.

The simplest of cells and the most complex 
of organisms rely on food and nutrients to 
fuel intricate metabolic programmes that 
enable survival, growth and reproductive 
proliferation. The set of metabolic reactions 
that is required for life is vast and complex. 
Individual cells execute thousands of bio-
chemical reactions — some are intrinsically 
anabolic or catabolic, some are seemingly 
incompatible and others even produce toxic 
or mutagenic by-products. How does an 
organism perform the many metabolic reac-
tions that are demanded of it without dire or 
futile consequences?

Spatial compartmentalization is one 
mode of dealing with this dilemma. At the 

single-cell level, organelles serve as special-
ized compartments that are dedicated to 
executing specific metabolic functions. For 
example, mitochondria represent the site of 
oxidative phosphorylation, peroxisomes per-
form fatty-acid oxidation and the endoplas-
mic reticulum facilitates protein oxidation. 
By confining particular reactions within 
organelles, disparate chemical reactions are 
insulated from the bulk environment and 
can proceed under locally optimized condi-
tions. In complex metazoan animals, spatial 
compartmentalization also occurs more 
macroscopically within tissues and organs. 
For example, the liver can be gluconeogenic 
when other organs are glycolytic.
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