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Abstract

The purpose of this chapter is to present a survey of recent publications concerning medical
image registration techniques. These publications will be classified according to a model based
on nine salient criteria, the main dichotomy of whicheigrinsicversusintrinsic methods The
statistics of the classification show definite trends in the evolving registration techniques, which
will be discussed. At this moment, the bulk of interesting intrinsic methods is either based on
segmented points or surfaces, or on techniques endeavoring to use the full information content
of the images involved.
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1. INTRODUCTION tomograph$)), PET (positron emission tomograghywhich

together make up theuclear medicinémaging modalities,
Within the current clinical setting, medical imaging is a and fMRI (functional MRI). With a little imagination, spa-
vital component of a large number of applications. Such tially sparse techniques like, EEG (electro encephalography),
applications occur throughout the clinical track of events; and MEG (magneto encephalography) can also be named
not only within clinical diagnostis settings, but prominently functionalimagingtechniques. Many more functional modal-
so in the area of planning, consummation, and evaluationities can be named, but these are either little used, or still in
of surgical and radiotherapeutical procedures. The imagingthe pre-clinical research stageg.,pMRI (perfusion MRI),
modalities employed can be divided into two global cate- fCT (functional CT), EIT (electrical impedance tomography),
gories: anatomicaland functional Anatomical modalities, = and MRE (magnetic resonance elastography).
i.e., depicting primarily morphology, include X-ray, CT Since information gained from two images acquired in the
(computed tomograpl), MRI (magnetic resonance imag- clinical track of events is usually of a complementary nature,
ing®), US (ultrasoung), portal images, and (video) sequences properintegrationof useful data obtained from the separate
obtained by various catheter “scopes’g.,by laparoscopy or  images is often desired. A first step in this integration process
laryngoscopy. Some prominent derivative techniques are sois to bring the modalities involved into spatial alignment, a
detached from the original modalities that they appear underprocedure referred to aggistration After registration, a
a separate name,g.,MRA (magnetic resonance angiogra- fusionstep is required for the integrated display of the data
phy), DSA (digital subtraction angiography, derived from X- involved. Unfortunately, the ternregistrationandfusion as
ray), CTA (computed tomography angiography), &uppler well asmatchingintegration correlation, and others, appear
(derived from US, referring to the Doppler effect measured). polysemously in literature, either referring to a single step or
Functional modalitiesi.e., depicting primarily information to the whole of the modality integration process. In this paper,
on the metabolism of the underlying anatomy, include (pla- only the definitions of registration and fusion as defined above
nar) scintigraphy, SPECT (single photon emission computedwill be used.

An eminent example of the use of registering different

*Corresponding author modalities can be found in the area of epilepsy surgery.

(e-mail: Twan.Maintz@cv.ruu.nl) Patients may undergo various MR, CT, and DSA studies
aAlso formerly and popularly CAT, computed axial tomography.

bAlso referred to as NMR, nuclear magnetic resonance, spin imaging, and 9Also SPET, single photon emission tomography.

various other names. e€SPECT and PET together are sometimes referred to as ECAT (emission
CAlso echo(graphy). computerized axial tomography).
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for anatomical reference; ictal and interictal SPECT studies; Ill. Nature of transformation
MEG and extra and/or intra-cranial (subdural or depth) EEG,

as well as'8FDG and/or*'C-Flumazenil PET studies. Reg- a. Rigid
istration of the images from practically any combination will b. Affine
benefit the surgeon. A second example concerns radiotherapy c. Projective
treatment, where both CT and MR can be employed. The d. Curved

former is needed to accurately compute the radiation dose,
while the latter is usually better suited for delineation of V. Domain of transformation
tumor tissue.

Besides multimodality registration, important applica-
tion areas exist in monomodality registration. Examples v|. Optimization procedure
include treatment verification by comparison of pre- and o
post-intervention images, comparison of ictal and inter-ictal V!l- Modalities involved
(during and between seizures) SPECT images, and growth
monitoring, e.g.,using time series of MR scans on tumors,

V. Interaction

a. Monomodal

. . o b. Multimodal
or X-ray time series on specific bones. Because of the _
high degree of similarity between these images, solving the ¢. Modality to model
registration is usually an order of magnitude easier than in d. Patient to modality
the multimodality applications. Vill.  Subject

This paper aims to provide a survey of recent literature
concerning medical image registration. Because of the a. Intrasubject
sheer volume of available papers, the material presented
is by necessity heavily condensed, and —except for a few
interesting and “classic” cases— no papers written before
1993 are referred to. Concerning publications pre-dating |X. Object
1993, we refer the reader to review papers such as van den

b. Intersubject
c. Atlas

Elsen, Pol & Viergever (1993) and Maurer, McCrory, & A registration procedure can always be decomposed into
Fitzpatrick (1993). No complete review papers of a later date three major pillars: theroblem statementhe registration
exist to our knowledge, except for the field of computer aided Paradigm and theoptimization procedure The problem
surgery (Lavake, 1996). To narrow the field of available Statement and the choice of paradigm and optimization pro-
publications in such a way does not, however, impede us in cedure together provide a unique classification according to
reaching our primary goal, which is to paint a comprehensive the nine criteria mentioned. Although pillars and criteria are

said that the problem statement determines the classification

picture of current medical image registration methods. heaVily intertwined and have many CI’OSS-inﬂuenCES, it can be
2. CLASSIFICATION OF REGISTRATION according to criteriavll, VIII , and IX, and has a direct
METHODS bearing on the criteriandlll . The paradigm influences the

criteriall , 11l , IV, andV most directly, while the optimization
The classification of registration methods used in this chapterProcedure influences criterion and controlsvl. Itis often
is based on the criteria formulated by van den Elsen, Pol & helpful to remember the th_ree pillars are independent, since
and Viergever (1993). A version considerably augmented andMany papers do not describe them as such, often presenting
detailed is presented. Nine basic criteria are used, each ofProblem statement, paradigm, and optimization procedure in

which is again subdivided on one or two levels. The nine &Ccompounded way.

criteria and primary subdivisions are: In the following sections, we will discuss the separate

criteria in more detail.
I. Dimensionality

. . . 3. DIMENSIONALITY
Il. Nature of registration basis

a. Extrinsic |. Dimensionality

b. Intrinsic a. Spatial dimensions only:

c. Non-image based 1. 2D/2D
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2. 2D/3D scanner between the acquisition of two images. The same
3. 3D/3D observations as for spatial-only registrations apply.

b. Time series (more than two images), with spatial dimen- 4, NATURE OF REGISTRATION BASIS

sions:
1. 2D/2D Il. Nature of registration basis
2. 2D/3D a. Extrinsic
3. 3D/3D 1. Invasive
3.1. Spatial registration methods A. S_terec_)tactic frame
The main division here is whether all dimensions are spatial, B. Fiducials (screw markers)
or thattime is an added dimension. In either case, the problem 2. Non-invasive

;an be furthgr categorized depending on the number of spatial A. Mould, frame, dental adaptestc.
imensions involved. Most current papers focus on the o .

3D/3D registration of two images (no time involve®D/3D B. Fiducials (skin markers)
registration normally applies to the registration of two tomo-
graphic datasets, or the registration of a single tomographic
image to any spatially defined informatiom,g., a vector 1. Landmark based
obtained from EEG data2D/2D registration may apply to
separate slices from tomographic data, or intrinsically 2D
images like portal images. Compared3D/3D registration,
2D/2Dregistration is less complex by an order of magnitude 2. Segmentation based

both where the number of parameters and the volume of the A. Rigid models (points, curves, surfaces)
data are concerned, so obtaining a registration is in many
cases easier and faster than in 83D case. We reserve

b. Intrinsic

A. Anatomical
B. Geometrical

B. Deformable models (snhakes, nets)

2D/3D registration for the direct alignment of spatial data 3. Voxel property based

to projective data, €.9.,a pre-operative CT image to an A. Reduction to scalars/vectors (moments, prin-
intra-operative X-ray image), or the alignment of a single cipal axes)

tomographic slice to spatial data. Some applications register B. Using full image content

multiple 2D projection images to a 3D image, but since a

usual preprocessing step is to construct a 3D image from the c¢. Non-image based (calibrated coordinate systems)

2D projection images, such applications are best categorized

as3D/3D applications. Since mo&D/3D applications con- 4.1, Extrinsic registration methods

cern intra-operative procedures within the operating theater,Image based registration can be divided iregtrinsic
they are heavily time-constrained and consequently have ai.e., based on foreign objects introduced into the imaged
strong focus on speed issues connected to the computatiorspace, andnhtrinsic methodsj.e., based on the image infor-
of the paradigm and the optimization. The majority of mation as generated by the patient.

applications outside the operating theater and radiotherapy Extrinsic methods rely on artificial objects attached to
setting allow for off-line registration, so speed issues need the patient, objects which are designed to be well visible

only be addressed as constrained by clinical routine. and accurately detectable in all of the pertinent modalities.
As such, the registration of the acquired images is com-
3.2. Registration of time series paratively easy, fast, can usually be automated, and, since

Time seriesof images are acquired for various reasons, the registration parameters can often be computed explicitly,
such as monitoring of bone growth in children (long time has no need for complex optimization algorithms. The
interval), monitoring of tumor growth (medium interval), main drawbacks of extrinsic registration are the prospective
post-operative monitoring of healing (short interval), or ob- characteri.e., provisions must be made in the pre-acquisition
serving the passing of an injected bolus trough a vessel treephase, and the often invasive character of the marker objects.
(ultra-short interval). If two images need to be compared, Non-invasive markers can be used, but as a rule are less
registration will be necessary except in some instances ofaccurate. A commonly used fiducial object istareotactic
ultra-short time series, where the patient does not leave theframe(Lunsford, 1988; Vandermeulen, 1991; Lemiaabal.,



4 J.B.A. Maintzet al.

1994b; Lemieux and Jagoe, 1994; Strotkdral, 1994; 4.2.1. Landmark based registration methods
Hemleret al,, 1995c; Vandermeulegt al, 1995; Peterst al,,
1996) screwed rigidly to the patient’s outer skull table, a
device which until recently provided the “gold standard” for
registration accuracy. Such frames are used for localization
and guidance purposes in neurosurgery. Since neurosurger
is one of the main application areas of registration, the use
of a stereotactic frame in the registration task does not add
an additional invasive strain to the patient. However, the
mounting of a frame for the sole purpose of registration is
not permissible. Sometimes other invasive objects are used
such as screw-mounted markers (Gall and Verhey, 1993;
Leung Lamet al,, 1993; Maureet al,, 1993; Liet al,, 1994b;
Maurer et al, 1994; Maureret al, 1995b; Maureret al,
1995a; Simoret al,, 1995b; Elliset al,, 1996), but usually
non-invasive marking devices are reverted to. Most popular
amongst these are markers glued to the skin (Eedrs,,
1991; Maguireet al, 1991; Malisoret al,, 1993; Wanget al,,
1994b; Wahlet al, 1993; Bucholzet al, 1994, Liet al,
1994b; Edwardet al, 1995a; Edwardst al, 1995b; Leslie

et al, 1995; Stapletowet al, 1995; Wanget al,, 1995; Fuchs

et al, 1996), but larger devices that can be fitted snugly to
the patient, like individualized foam moulds, head holder
frames, and dental adapters have also been used, althoug
they are little reported on in recent literature (Greatzal,,
1980; Laitineret al,, 1985; Schaet al,, 1987; Hawke=t al,,
1992; Evangt al, 1989; Evant al, 1991).

Since extrinsic methods by definition cannot include pa-
tient related image information, the nature of the registration
transformation is often restricted to be rigid (translations and
rotations only). Furthermore, if they are to be used with
images of low (spatial) information content such as EEG
or MEG, a calibrated video image or spatial measurements
are often necessary to provide spatial information for basing
the registration on. Because of the rigid-transformation con-
straint, and various practical considerations, use of extrinsic
3D/3D methods is largely limited to brain and orthopedic (Si-
mon et al, 1995b; Elliset al, 1996) imaging, although
markers can often be used in projective (2D) imaging of
any body area. Non-rigid transformations can in some cases
be obtained using markers,g.,in studies of animal heart
motion, where markers can be implanted into the cardiac
wall.

Landmarkscan beanatomical i.e., salient and accurately
locatable points of the morphology of the visible anatomy,
usually identified interactively by the user (Evaatsl., 1989;
Evanset al, 1991; Hill et al, 1991a; Hill et al, 1991b;
K/Iaguweet al, 1991; Zubalket al, 1991; Henriet al, 1992;
Bijhold, 1993; Dinget al., 1993; Fright and Linney, 1993;
Gluhchev and Shalev, 1993; Hék al, 1993b; Morriset al,,
1993; Neelinet al, 1993; Wahlet al, 1993; Geet al,
1994; Harmonet al, 1994; Moseley and Munro, 1994;
Pietrzyket al, 1994; Strotheet al, 1994; Edwardst al,
'1995a; Edward®t al., 1995b; Geet al, 1995; Hamadeh
et al, 1995b; Hamadelet al, 1995c; Leslieet al, 1995;
Meyeret al,, 1995; McParland and Kumaradas, 1995; Soltys
et al, 1995; Saviet al, 1995; Stapletoret al, 1995;
Vandermeuleret al., 1995; Zubalet al., 1995; Christensen
et al, 1996; Evanst al, 1996b; Evan®t al., 1996a; Erbe
et al, 1996; Fanget al,, 1996; Peterst al,, 1996; Rubinstein
et al, 1996), orgeometrical i.e., points at the locus of the
optimum of some geometric property,g.,local curvature
extrema, cornersetc, generally localized in an automatic
fashion (Heet al,, 1991; Fontanet al., 1993; Ault and Siegel,
%994; Eilertseret al, 1994; Thirion, 1994; Ault and Siegel,
995; Uenohara and Kanade, 1995; Amit and Kong, 1996;
Chua and Jarvis, 1996; Thirion, 1996a). Technically, the
identification of landmark points is a segmentation procedure,
but we reserve the classificatiaegmentation baseckgis-
tration for methods relating to segmentation of structures of
higher orderj.e., curves, surfaces, and volumes. Landmark
based registration is versatile in the sense that it —at least
in theory— can be applied to any image, no matter what the
object or subject is. Landmark based methods are mostly
used to find rigid or affine transformations. If the sets of
points are large enough, they can theoretically be used for
more complex transformations. Anatomical landmarks are
also often used in combination with an entirely different
registration basis (Evanst al, 1989; Evanset al, 1991;
Wabhlet al,, 1993; Moseley and Munro, 1994; Hamadiial.,
1995c¢; McParland and Kumaradas, 1995; Zédall., 1995;
Christenseret al,, 1996; Evanst al,, 1996b): methods that
rely on optimization of a parameter space that is not quasi-
convex are prone to sometimes get stuck in local optima,
possibly resulting in a large mismatch. By constraining
the search space according to anatomical landmarks, such
mismatches are unlikely to occur. Moreover, the search
procedure can be sped up considerably. A drawback is that
user interaction is usually required for the identification of
the landmarks.

4.2. Intrinsic registration methods

Intrinsic methods rely on patient generated image content
only. Registration can be based on a limited set of identified
salient pointglandmarks) on the alignment of segmented bi-
nary structuregsegmentation basednost commonly object
surfaces, or directly onto measures computed from the image In landmark based registration, the set of identified points
grey valuegvoxel property based) is sparse compared to the original image content, which
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makes for relatively fast optimization procedures. Such Maurer et al, 1995a; Pellotet al, 1995; Pallottaet al,
algorithms optimize measures such as the average distanc&995; Pajdla and van Gool, 1995; Pennec and Thirion, 1995;
(L2 norm) between each landmark and its closest counter-Ryanet al, 1995; Rizzoet al, 1995; Simonet al., 1995b;

part (theProcrusteanmetric), or iterated minimal landmark  Simonet al, 1995a; Serra and Berthod, 1995; Scattal,,
distances. For the optimization of the latter measure the 1995; Sull and Ahuja, 1995; Troccat al., 1995; Turkington
Iterative closest poin{ICP) algorithm (Besl and McKay, et al, 1995; Vassaét al,, 1995; Vandermeuleat al,, 1995;
1992) and derived methods are popular. Its popularity can Xiao and Jackson, 1995; Zubet al, 1995; Declercet al,

be accredited to its versatility —it can be used for point sets, 1996; Evan®t al,, 1996b; Ettingeet al,, 1996; Feldmar and
and implicitly and explicitly defined curves, surfaces and Ayache, 1996; Grimsoat al,, 1996; Gilhuijset al,, 1996; Ge
volumes—, computational speed, and ease of implementa-etal, 1996; Goriet al,, 1996; Hemleet al,, 1996; Jairet al.,

tion. The Procrustean optimum can sometimes be computed1996; Laval€e et al, 1996b; Lavakeet al, 1996a; Qian
using e.g., Arun’s method (1987), but is more commonly etal, 1996; Szeliski and LavaE, 1996; Wangt al., 1996c¢),
searched for using general optimization techniques. Suchwhere anatomically the same structures (mostly surfaces) are
techniques are referred to in section 7. Yet other methodsextracted from both images to be registered, and used as
perform landmark registration by testing a number of likely sole input for the alignment procedure. They can also be
transformation hypotheses, which cang., be formulated deformable model basdBajcsyet al,, 1983; G&ziec, 1993;

by aligning three randomly picked points from each point Taubin, 1993; Davatzikos and Prince, 1994; MacDonald
set involved. Common optimization methods here are quasi-et al, 1994; Sandor and Leahy, 1994; Tatnal., 1994; Bro-
exhaustive searches, graph matching and dynamic programsielsen, 1995; Bainvilleet al, 1995; Manginet al., 1995;

ming approaches. Sandor and Leahy, 1995; Thirion, 1995; Cuisenaireal.,
1996; Davatziko®t al., 1996; Davatzikos, 1996; Mclnerney

4.2.2. Segmentation based registration methods and Terzopoulos, 1996; Thirion, 1996b), where an extracted

Segmentation basedgistration methods can bigid model structure (also mostly surfaces, and curves) from one image is

based(Chenet al, 1987; Levinet al, 1988; Geziec and elastically deformed to fit the second image. Tigéd model
Ayache, 1992; Jiangt al, 1992b; Ayacheet al., 1993; basedapproaches are probably the most popular methods
Collignon et al, 1993a; Fritsch, 1993; Geet al., 1993; currently in clinical use. Their popularity relative to other
Geeet al, 1994; Geeet al, 1995a; Geeet al, 1995b; Gee approaches is probably for a large part due to the success
and Haynor, 1996; Gilhuijs and van Herk, 1993; Htlal,, of the “head-hat” method as introduced by Pelizzari and co-
1993a; Kittleret al, 1993; Miller et al, 1993; Rusinek  workers (Chenet al, 1987; Levinet al, 1988; Pelizzari

et al, 1993; Tsuiet al., 1993; Turkingtoret al., 1993; Zhao et al,, 1989; Chen and Pelizzari, 1989), which relies on the
et al, 1993; Collignonet al, 1994; Ettingeret al,, 1994b; segmentation of the skin surface from CT, MR and PET
Ettingeret al, 1994a; Feldmar and Ayache, 1994; Fritsch images of the head. Since the segmentation task is fairly
et al, 1994b; Fritschet al, 1994a; Grimsoret al, 1994a; easy to perform, and the computational complexity relatively
Grimsonet al,, 1994b; Grimsoret al, 1994c; Hemleet al, low, the method has remained popular, and many follow-up
1994a; Hemleet al,, 1994b; Huang and Cohen, 1994; Hata papers aimed at automating the segmentation step, improving
et al, 1994; Hendersomt al., 1994; van Herk and Kooy, the optimization performance, or otherwise extending the
1994; Kanatani, 1994; Krattenthaketral,, 1994; Kooyet al, method have been published. Another popularity cause is
1994; Lavalkeet al, 1994; Liuet al, 1994; Maurert al, the fastChamfer matchingechnique for alignment of binary
1994; Mendona et al, 1994; Rria et al, 1994; Philips, structures by means of a distance transform, introduced
1994; Pettiet al, 1994; Simonet al, 1994; Serra and by Borgefors (1988). A drawback of segmentation based
Berthod, 1994; Szelisky and Lavadl; 1994; Szeliski and methods is that the registration accuracy is limited to the
Lavallée, 1994; Scotet al, 1994; Strotheret al, 1994; accuracy of the segmentation step. In theory, segmentation
Staib and Xianzhang, 1994; Tanejbal,, 1994; Wancet al,, based registration is applicable to images of many areas of
1994a; Zuket al, 1994; Ardekankt al, 1995; Andersson the body, yet in practice the application areas have largely
et al, 1995; Andersson, 1995; Betting and Feldmar, 1995; been limited to neuroimaging and orthopedic imaging. The
Betting et al, 1995; Burelet al, 1995; Christmast al., methods are commonly automated but for the segmentation
1995; Feldmaret al, 1995; Grimsonet al, 1995; Henri step, which is performed semi-automatically most of the
et al, 1995; Hemleret al, 1995c; Hemleret al, 1995b; times.

Hemleret al,, 1995a; Hamadeét al., 1995b; Hamadeét al., With deformable modeltiowever, the optimization cri-
1995c; Hamadetlet al, 1995a; Kruggel and Bartenstein, terion is different: it is always locally defined and com-
1995; Laval€e and Szeliski, 1995; Leszczynshial., 1995; puted, and the deformation is constrained by elastic model-
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ing constraints (by a regularization term) imposed onto the 1996b). Deformable models are ideally suited for the former
segmented curve or surface. Deformable curves appear inapplication, as the bone contours are easily extracted from
literature asnake®r active contours3D deformable models  the CT, and there are often no other contours near that disturb
are sometimes referred tomsts To ease the physical model- the proper deformation convergence. The latter application
ing, the data structure of deformable models is not commonly is important because if a cortical registration between two
a point set. Instead, it is often represented using localizedbrains can be found, a segmentation of one cortex can be
functions such as splines. The deformation process is alwaysinstantly transfered to the other.

done iteratively, small deformations at a time. Deformable

model approaches are based t¢eraplate modehatneedsto  4.2.3. Voxel property based registration methods

be defined in one image. After this, two types of approaches The voxel property basedegistration methods stand apart
can be identified: the template is either deformed to match from the other intrinsic methofisby the fact that they

a segmented structure in the second image (Taubin, 1993pperate directly on the image grey values, without prior
Davatzikos and Prince, 1994; Sandor and Leahy, 1994; Tomdata reduction by the user or segmentation. There are two
etal, 1994; Bro-nielsen, 1995; Bainvillet al, 1995; Sandor  distinct approaches: the first is to immediatedyucethe

and Leahy, 1995; Thirion, 1995; Cuisenagtal, 1996; image grey value content to a representative set of scalars
Davatzikoset al, 1996; Davatzikos, 1996; Thirion, 1996b), and orientations, the second is to use the full image content
or the second image is usedsegmente¢Bajcsyet al,, 1983; throughout the registration process.

Guéziec, 1993; MacDonaldt al,, 1994). In the latter case, Principal axes and moments based methadsthe prime

the fit criterion of the template can be,g.,to lie on an examples ofreductiveregistration methods. Within these
edge region in the second image. Opposed to registrationmethods the image center of gravity and its principal orien-
based on extracted rigid models, which is mainly suited for tations (principal axes) are computed from the image zeroth
intrasubject registration, deformable models are in theory and first order moments. Registration is then performed
very well suited for intersubject and atfasegistration, as by aligning the center of gravity and the principal orienta-
well as for registration of a template obtained from a patient tions (Alpertet al, 1990; Banerjee and Toga, 1994; Ettinger
to a mathematically defined general model of the templatedet al, 1994b; Ettingeret al, 1994a; Pam et al, 1994;
anatomy. A drawback of deformable models is that they often \Wang and Fallone, 1994; Slomlat al, 1995; Dong and
need a good initial position in order to properly converge, Boyer, 1996; Wanget al, 1996a). Sometimes, higher
which is generally realized by (rigid) pre-registration of the order moments are also computed and used in the process.
images involved. Another disadvantage is that the local The result is usually not very accurate, and the method is
deformation of the template can be unpredictably erratic if the not equipped to handle differences in scanned volume well,
target structure differs sufficiently from the template struc- although some authors attempt to remedy this latter problem.
ture. A typical error is that the deformable model matches Despite its drawbacks, principal axes methods are widely
the anatomy perfectly, except in the one interesting image used in registration problems that require no high accuracy,
area where a large tumor growth has appeared. In intrasubjechecause of the automatic and very fast nature of its use, and
matching ofe.g. the cortical surface, this may resultin entire - the easy implementation. The method is used primarily in the
gyri being missed or misplaced. The solution may lie in re-alignment of scintigraphic cardiac studies (even intersub-
locally adapting the elasticity constraints (Bro-nielsen, 1995; ject) (Slomkaet al, 1995), and as a coarse pre-registration
Little et al, 1996). Deformable models are best suited to in various other registration areas (Banerjee and Toga, 1994;
find local curved transformations between images, and lessEttinger et al, 1994b; Ettingeret al, 1994a; Pas et al.,

so for finding (global) rigid or affine transformations. They 1994; Slomkaet al., 1995; Dong and Boyer, 1996). Moment
can be used on almost any anatomical area or modality, andbased methods also appear as hybridly classified registration
are usually automated but for the segmentation step. In themethods that use segmented or binarized image data for input.
current literature the major applications are registration of In many applications, pre-segmentation is mandatory in order
bone contours obtained from €Tand cortical registration  for moment based methods to produce acceptable results.

of MR images (Bajcsyet al, 1983; Davatzikos and Prince, Voxel property based methods using the full image content
1994; MacDonaldet al, 1994; Sandor and Leahy, 1994; are the most interesting methods researched currently. Theo-
Sandor and Leahy, 1995; Thirion, 1995; Cuisenairel, retically, these are the most flexible of registration methods,

1996; Davatzikoset al, 1996; Davatzikos, 1996; Thirion, since they —unlike all other methods mentioned— do not start
with reducing the grey valued image to relatively sparse

aIntersubject and atlas registration is covered in section 9.
be.g.,see (Fangt al., 1996). CExcept some instances of geometric landmark registration.
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extracted information, but use all of the available information
throughout the registration process. Although voxel property
based methods have been around a long time, their use in
extensive 3D/3D clinical applications has been limited by
the considerable computational costs. An increasing clinical
call for accurate and retrospective registration, along with
the development of ever-faster computers with large internal
memories, have enabled full-image-content methods to be
used in clinical practice, although they have not yet been
introduced in time-constrained applications such as intra-
operative 2D/3D registration. Methods using the full image
content can be applied in almost any medical application
area, using any type of transformation. However, such a
statement is largely merited by the fact that “full-image-
content based” is a very gross classifier. The real versatility
of a method can only be established on an individual basis.
Many recent papers report on applications that are tailored for
rigid or affine global registration of 3D images of the head.
Nearly all presented methods are automatic, although hybrid
approaches(g.,including an interactive landmark based pre-
registration) are being suggested (Studhokhel, 1996).
While the methods theoretically support curved transforma-
tions and intersubject registration, we have encountered only
few publications on this.

As concerns full-image-content based voxel property
registration methods, literature reports on the follow-
ing paradigms being usedk (= most likely restricted to
monomodal applications):

e Cross-correlation (of original images or extracted fea-
ture images) (Juncét al,, 1990; Bacharacht al., 1993;
Bettinardi et al, 1993; van den Elsen and Viergever,
1993; Hill, 1993; Hua and Fram, 1993; ich and
Riegsegger, 1993; Radcliffet al, 1993; Banerjee
and Toga, 1994; Collingt al, 1994a; Collinset al,
1994b; van den Elsen, 1994; van den Elssnal,
1994; Lemieuxet al, 1994a; Moseley and Munro,
1994; Maintzet al, 1994; Maintzet al,, 1996c; Pawa
et al, 1994; Radcliffeet al, 1994; Andersson, 1995;
Anderssoret al,, 1995; Cideciyan, 1995; Collinst al,,
1995; van den Elseat al, 1995; Hemleeet al,, 1995c;
McParland and Kumaradas, 1995; Maietzal., 1995;
Peraultet al, 1995; Studholmet al,, 1995b; Studholme

Hill et al,, 1993a; Wood®t al, 1993; Ardekankt al.,,
1994; Studholmet al,, 1995b; Studholmet al., 1995a;
Zuoet al, 1996).

Minimization of variance of grey values within seg-
ments (Cox and de Jager, 1994; Ardekatral., 1995).
Minimization of the histogram entropy of difference
images (Buzug and Weese, 1996).

Histogram clustering and minimization of histogram
dispersion (Hill, 1993; Hillet al, 1994; Hill and
Hawkes, 1994; Collignoet al, 1995b; Hawke®t al,,
1995; Studholmet al, 1995b; Studholmet al,, 1995a;
Lehmanret al,, 1996).

Maximization of mutual information (relative entropy)
of the histogram (Collignoret al, 1995a; Viola and
Wells 11, 1995; Viola, 1995; Wells llet al.,, 1995; Maes
et al, 1996; Pokrandt, 1996; Studholne¢ al, 1996;
Viola et al,, 1996; Wells lllet al, 1996).

Maximization of zero crossings in difference images
(Stochastic sign change (SSC), and Deterministic sign
change (DSC) criterion) (Venet al,, 1983; Venott al.,,
1984; Venot and Leclerc, 1984; Hua and Fram, 1993;
Hohet al, 1993; Venott al,, 1994; Peraulét al., 1995;
Bani-Hashemet al,, 1996).

x Cepstral echo filtering (Bandagt al.,, 1994).

Determination of the optic flow field (Barbest al,
1995; Meunieet al,, 1996).

Minimization of the absolute or squared intensity differ-
ences (Horet al,, 1993; Langeet al,, 1993; Zhacet al,
1993; Moseley and Munro, 1994; Yeurg al, 1994;
Christenseret al, 1995b; Christenseet al, 1995a;
Haller et al, 1995; Hajnalet al, 1995a; Hajnakt al,
1995b; Jacq and Roux, 1995; Kruggel and Bartenstein,
1995; Slomkaet al, 1995; Unseret al, 1995; Chris-
tensenet al., 1996; Eberlet al, 1996; Halleret al.,
1996).

Matching local low-order Taylor expansions determined
by the image grey values (Shieldsal.,, 1993).

Implicitly using surface registration by interpreting a 3D
image as an instance of a surface in 4D space (Feldmar
et al, 1996).

4.3. Non-image based registration
It seems paradoxical that registration of multimodal images

et al, 1995a; Dong and Boyer, 1996; Gottesfeld Brown can benon-image basedbut it is possible if the imaging
and Boult, 1996; Hristov and Fallone, 1996; Lehmann coordinate systems of the two scanners involved are somehow
et al, 1996; Maintzet al, 1996b). calibrated to each other. This usually necessitates the scan-
Fourier domain based cross-correlation, and phase-onlyners to be brought in to the same physical location, and the
correlation (de Castro and Morandi, 1987; Leclerc and assumption that the patient remain motionless between both
Benchimol, 1987; Chen, 1993; Lehmashal, 1996; acquisitions. These are prohibitive prerequisites in nearly all
Shekarforouskt al., 1996; Wanget al., 1996b). applications, but they can be sufficiently met in applications
¢ Minimization of variance of intensity ratios (Hill, 1993; involving the use of ultrasound (Hatet al., 1994; Rfria
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et al, 1995; Erbeet al, 1996). Since ultrasound systems can wheret is an arbitrary translation vector, amdis a 3x 3
come as hand-held devices that are equipped with a spatiarotation matrix defined by:

(optical) localization system, they are easily calibrated, and . B

can be used while the patient is immobilized on the CT, MR n=rirand, 0= ( 0 com; -sina ) ,
or operating gantry. The technique of calibrated coordinate 0 sinay  cosa
syste;ms is also often used in reglster!ng the position of cost; 0 sinds costs  —sinas 0
surgical tools mounted on a robot arm to im&ges r@ = ( 0 10 ) , r®= ( sinag  cosus 0 ) ,

—sina, 0 cosup 0 0 1

5. NATURE AND DOMAIN OF THE

TRANSEORMATION i.e., ') rotates the image around axi®y an anglen;. In

the affine caser; is unrestricted. In the projective case, we
can only use a constant matrix representation if employing

lll. Nature of transformation homogeneous coordinateg:= uj/us, Ui = &jX;, wherea is

a. Rigid an arbitrary 4x 4 constant matrix. Curved transformations
. cannot in general be represented using constant matrices.
b. Affine Most applications represent curved transformations in terms
c. Projective of a local vector d|splacemen([d|spgr|ty)_f|eId: Yi =X +
ti(x), or as polynomial transformations in terms of the old
d. Curved coordinates.
IV. Domain of transformation 5.2. Domain of the transformation
a. Local A transformation is caIIeaonbaI if it a_pplies to the entire .
image, andocal if subsections of the image each have their
b. Global own transformations defined. Figure 1 shows examples of all

transformation types mentioned.
5.1. Nature of the transformation

An image coordinate transformation is calledid, when Original Global Local
only translations and rotatiohsre allowed. If the trans-
formation maps parallel lines onto parallel lines it is called @@ Qﬂ
affine If it maps lines onto lines, it is callegrojective Rigid
Finally, if it maps lines onto curves, it is callezirvedor
elastic Each type of transformation contains as special cases T
the ones described before &.g.,the rigid transformation is O E @
a special kind of affine transformation. A composition of I Affine
more than one transformation can be categorized as a singl¢ O[] ——
transformation of the most complex type in the composition, O E
e.g.,a composition of a projective and an affine transforma-
tion is a projective transformation, and a composition of rigid L Projective
transformations is again a rigid transformation.
A rigid or affine 3D transformation can be described using @@ G’E
a single constant matrix) equationzy; = a;;X;, wherex and Curved
y are the old and new coordinate vectors. In the rigid case,
this equation is constrained as:
Y1 X1
V2 . r t X2
ys | X3 |’ Figure 1. Examples of 2D transformations.
1 0 0 0|1 1

8For instance (Potamianag al, 1995; Peteret al, 1996). See computer

. . g 5.3. General transformation observations
aided surgery literature (Lavak, 1996) for more complete references. . .
band, technically, reflections, but this is disregarded in our formulation, since LOcal transformations are seldom used directly, because they

they do not apply to the general medical image registration problem. may violate the local continuity and bijectiveness of the trans-



A Survey of Medical Image Registration 9

formations, which impairs straightforward image resampling common medical images the rigid body constraint is, at
when applying the transformation to the image. The term least to a good approximation, satisfied. Furthermore, it
local transformationis reserved for transformations that are has relatively few parameters to be determined, and many
composites ofat leasttwo transformations determined on registration techniques are not equipped to supply a more
sub-images that cannot be generally described as a globatomplex transformation. The most common application area
transformation. Hence, singletransformation computed on is the human head.
some volume of interest of an image, igkbal transfor-
mation, except that “global” now refers to the new image, 6. INTERACTION
which is a sub-image of the original. This definition, perhaps
confusingly, does not impair a global transformation to be V. Interaction
computed locallye.g.,some applications compute a global _
rigid transformation of an image of the entire head based on @. Interactive
computations done in the area of the facial surface only. Local
rigid, affine, and projective transformations occur only rarely
in the literature, although local rigid transformations may ap- 2. No initialization supplied
pear embedded in local curved transformations (Bro-nielsen,
1995; Littleet al, 1996). Some problemsthat are intrinsically ~ b. Semi-automatic
locally rigid (such as the registering of individual vertebrae
from images of the spinal column) are in registration tasks
often solved by splitting the image in images meeting the 2. User steering/correcting
global rigid body constraint. 3. Both
In recently published registration papers, as a rule, rigid '
and affine transformations are global, and curved transfor- - aytomatic
mations are local. This makes sense, given the physical
model underlying the curved transformation type, and given  Concerning registration algorithms, three levels of inter-
that the rigid body constraint is —globally, or in well defined action can be recognizedAutomatic where the user only
sub-images— approximately met in many common medical supplies the algorithm with the image data and possibly
images. Affine transformations are typically used in instances information on the image acquisitioninteractive where
of rigid body movement where the image scaling factors the user does the registration himself, assisted by software
are unknown or suspected to be incorrect, (notably in MR supplying a visual or numerical impression of the current
images because of geometric distortions). The projective transformation, and possibly an initial transformation guess.
transformation type has no real physical basis in image Semi-automatiovhere the interaction required can be of two
registration except foRD/3D registration, but is sometimes different natures: the user needsititialize the algorithm,
used as a “constrained-elastic” transformation when a fully e.g.,by segmenting the data, steerthe algorithmge.g.,by
elastic transformation behaves inadequately or has too manyrejecting or accepting suggested registration hypotheses.
parameters to solve for. The projective transformation is not  Many authors strive for fully automated algorithms, but it
always used ir2D/3D applications: even though projections can be discussed whether this is desiredlircurrent clinical
will always figure in the problem, the transformation itself is applications. The argument is that many current methods
not necessarily projective but may be rigid, if it applies to the have a trade-off between minimal interaction and speed,
3D image prior to its projection to the 2D image. accuracy, or robustness. Some methods would doubtlessly
Since local information of the anatomy is essential to benefit if the user were “kept in the loop”, steering the op-
provide an accurate local curved transformation, applicationstimization, narrowing search space, or rejecting mismatches.
are nearly alwayintrinsic, mostly deformable model based On the other hand, many methods spent over 90% of their
or using the full image contenand mostly semi-automatic, computation time examining registrations at a resolution level
requiring a user-identified initialization. They appear almost that would hardly benefit from human intervention. If they
solely using anatomical images (CT, MR) of the head, and are perform robustly, such methods are better left automated.
excellently suited for intersubject and image to atlas registra- Furthermore, many applications require registration algo-
tion. Many methods require a pre-registration (initialization) rithms to operate objectively, and thus allow no human inter-
using a rigid or affine transformation. action. Human interaction also complicates the validation of
The global rigid transformation is used most frequently registration methods, inasmuch as it is a parameter not easily
in registration applications. It is popular because in many quantified or controlled.

1. Initialization supplied

1. User initializing



10 J.B.A. Maintzet al.

Extrinsic methods are often easigutomated since the et al, 1991b; Gilhuijs and van Herk, 1993; Hét al., 1993a;
marker objects are designed to be well visible and detectableHoh et al., 1993; Leung Lamet al, 1993; van Herk and
in the images involvetl Sometimes users are required to Kooy, 1994; Kooyet al, 1994; Liet al, 1994b; Meyer
roughly point out the marker region, or supply a seed point et al,, 1995; Slomkaet al,, 1995; Eberkt al,, 1996), Brent’s
located in the markersémi-automatic Of the intrinsic method and series of one-dimensional searches (Bacharach
methods, theanatomical landmarkand segmentation based et al, 1993; Minch and Régsegger, 1993; Ault and Siegel,
methods are commonlgemi-automatic (user initializing) 1994; Pettiet al, 1994; Ault and Siegel, 1995; Ardekani
and the geometrical landmarkand voxel property based et al, 1995; McParland and Kumaradas, 1995; Hristov and
methods are usualputomatedFully interactivemethodsare  Fallone, 1996), Levenberg-Marquardt optimization (Taubin,
reported on very little in the recent literature (Morasal, 1993; Hemleret al,, 1994a; Hemleet al,, 1994b; Szelisky
1993; Pietrzyket al, 1994; Soltyset al, 1995). Perhaps, and Laval€e, 1994; Szeliski and Lavek, 1994; Bainville
like many methods that rely primarily on the proper use et al, 1995; Hamadekt al., 1995b; Hamadeht al,, 1995c;
of good visualization software, they are —often undeserved—Lavallée and Szeliski, 1995; Unset al, 1995; Lavale

considered trivial. et al, 1996a; Szeliski and Lavaé, 1996), Newton-Raphson
iteration (Fright and Linney, 1993; Woods al., 1993; Zuo

7. OPTIMIZATION PROCEDURE et al, 1996), stochastic search methods (Mikgral,, 1993;
Viola and Wells Ill, 1995; Viola, 1995; Wells llet al.,

VI. Optimization procedure 1995; Violaet al, 1996; Wells Ill et al., 1996), gradient

descent methods (Zukt al, 1994; Peraultet al, 1995;
Buzug and Weese, 1996; Christens¢rl., 1996; Cuisenaire
b. Parameters searched for et al., 1996), genetic methods (Hﬁt aI., 1993a; Hillet aI.,

. ) 1994; Hill and Hawkes, 1994; Staib and Xianzhang, 1994;
~ The parameters that make up the registration transforma-kryggel and Bartenstein, 1995; Cragsal, 1996), simulated
explicit fashion from the available data, searched for Ayache, 1992; Ayachet al, 1993; Pajdla and van Gool,
i.e., determined by finding an optimum of some function de- 1995) and quasi-exhaustive search methods (Bettintadl
fined on the parameter space. In the former case, the mannefgg3; van den Elsen and Viergever, 1993; Hua and Fram,
of computation is completely determined .by the paradigm. 1993: Cox and de Jager, 1994; van den Elsen, 1994; van den
The only general remark we can make is that the use of Eisenet al, 1994; Mendonaet al, 1994; Maintzet al, 1994;
computatiormethods is restricted almost completely to appli- \paintzet al, 1996¢: van den Elsest al., 1995: Maintzet al.,
cations relying on very sparse informatiang.,small point 1995; Dong and Boyer, 1996; Main& al, 1996b). Many
set8. In the case obearchingoptimization methods, most  of these methods are documented in (Pressl, 1992).
registration methods are able to formulate the paradigm in aprequent additions are multi-resolutioe.d., pyramid) and
standard mathematical function of the transformation param- myti-scale approaches to speed up convergence, to reduce
eters to be optimized. This function attempts to quantify the the number of transformations to be examined (which is
similarity as dictated by the paradigm between two images especially important in the quasi-exhaustive search methods)
given a certain transformation. Such functions are generally gng to avoid local minima. Some registration methods
less complex in monomodal registration applications, since employ non-standard optimization methods that are designed
the similarity is more straightforward to define. Hopefully, specifically for the similarity function at hand, such as the
the similarity function is well-behaved (quasi-convex) so one |cp algorithm (Besl and McKay, 1992; Simet al, 1994;
of the standard and well-documented optimization techniquesge|gmar and Ayache, 1994; Mauretral, 1995a; Pajdla and
can be used. Popular techniques are Powell's method (Levinyan Gool, 1995; Simoet al, 1995a; Betting and Feldmar,
et al, 1988; Hill et al, 1991b; Tsuiet al, 1993; Ettinger  1995; Bettinget al, 1995; Cucheét al, 1995; Feldmaet al,
et al, 1994b; Ettingert al, 1994a; Hateet al, 1994; van  1995; Elliset al, 1996; Feldmakt al, 1996; Feldmar and

a. Parameters computed

Herk and Kooy, 1994; Koot al, 1994; Lemieuxe_t al, Ayache, 1996; Gorit al, 1996), created forigid model
1994a; Andersson, 1995; Anderssaal, 1995; Collignon  pased registration. Many applications use more than one
et al, 1995a; Leszczynslat al., 1995; Bani-Hashenet al, optimization technique, frequently a fast but coarse technique

1996; Gilhuijset al, 1996; Gottesfeld Brown and Boult,  fg|iowed by an accurate yet slow one.
1996; Mae<t al,, 1996), the Downbhill Simplex method (Hill

4seee.g., (Wanget al, 1995)
bseee.g., (Arun et al,, 1987; Hill et al, 1991a; Hillet al., 1993b)
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8. MODALITIES INVOLVED IN THE
REGISTRATION

Note: The lists of modalities below, in exception, are not

2. MR
3. SPECT
4, X-ray

meant to be theoretically complete, but give the modality d. Patient to modality

instances encountered in recent literature.

VIl. Modalities involved
a. Monomodal

1. Auto-radiographic
CTor CTA

MR

PET

Portal

SPECT

us

Video

9. X-ray or DSA

© N ok~

b. Multimodal

=

CT—MR
CT—PET
CT—SPECT
DSA—MR
PET—MR
PET—US
SPECT—MR
SPECT—US
TMS*—MR

. US—CT

. US—MR

. X-ray—CT

. X-ray—MR

. X-ray—portal
. X-ray—US

. Video—CT
17. Video—MR

© ® N gk N

el e o
o UM WDN PR O

¢. Modality to model

1. CT

aTranscranial magnetic stimulation.

1. CT
2. MR
3. PET
4. Portal
5. X-ray

Four classes of registration tasks can be recognized based
on the modalities that are involved. monomodabkpplica-
tions, the images to be registered belong to the same modality,
as opposed tmultimodalregistration tasks, where the images
to be registered stem from two different modalities. In
modality to modeblnd patient to modalityregistration only
one image is involved and the other “modality” is either
a model or the patient himself. Hence we use the term
“modality” in a loose sense, not only applying to acquired
images, but also to mathematical models of anatomy or phys-
iology, and even to the patient himself. Such inclusions are
necessary to properly type-cast the four categories according
to the actual registration task to be solved. At a first glance,
this classification may seem paradoxiqadtient to modality
may seem a registration task appearing in any application.
However, the classification is disjunct and closed if only
the actual coordinate systems that need to be related are
consideredli.e., the coordinate systems referring to the actual
modalities named in theroblem statementor example:

e For diagnostic purposes, two myocardial SPECT images
are acquired of the patient, under rest and stress condi-
tions. Their registration is a monomodal application.

¢ Torelate an area of dysfunction to anatomy, a PET image
is registered to an MR image. This is a multimodal
application.

e To register an MR to a PET image, a PET image image
is first simulatedfrom the MR image, and the real and
simulated PET images are registered. This is still a
multimodal application.

e An example of modality to model is the registration
of an MR brain image to a mathematically defined
compartimental model of gross brain structures.

¢ In radiotherapy treatment, the patient can be positioned
with the aid of registration of in-position X-ray simulator
images to a pre-treatment anatomical image. Although
the registration task is performed using only the images
acquired, the actual task of patient positioning is clearly
an example opatient to modalityegistration.
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The patient to modalityregistration tasks appear almost a patient image to an image of a “normal” subject is termed
exclusively in intra-operative (Buchok&t al., 1994; Harmon atlas registration. Although this definition is as good as ours,
et al, 1994; Hendersoant al, 1994; Lemiewet al,, 1994a; we refer to this type of registration astersubject to keep

Lavallée et al, 1994; Leaet al, 1994; Liet al, 1994b; the class distinctions cleaimtrasubjectregistration is by far
Simon et al, 1994; Wanget al, 1994a; Bettinget al, the most common of the three, used in almost any type of
1995; Betting and Feldmar, 1995; Bainvilkt al, 1995; diagnostic and interventional procedulgtersubjectBajcsy
Cuchetet al, 1995; Edwardst al., 1995a; Edwardst al, et al, 1983; Geeet al, 1993; Miller et al, 1993; Szeliski

1995b; Hamadelet al, 1995c; Hamadetet al, 1995a; and Laval€e, 1994; Szelisky and Lava#f; 1994; Sandor and
Leaet al, 1995a; Leaet al, 1995b; Maurert al, 1995b; Leahy, 1994; Collinset al, 1995; Geet al, 1995; Haller
Miaux et al, 1995; Ryaret al, 1995; Simoret al,, 1995b; et al, 1995; Sandor and Leahy, 1995; Thirion, 1995; Amit
Simonet al, 1995a; Evanst al,, 1996b; Fuchgt al., 1996; and Kong, 1996; Decleret al, 1996; Fanget al, 1996;
Lavalléeet al, 1996b; Lavake, 1996; Peterst al, 1996) Gee and Haynor, 1996; Hallet al., 1996; Thirion, 1996b)
and radiotherapy (Bijhold, 1993; Gall and Verhey, 1993; and atlas registration (Collinset al., 1994a; Collinset al,,
Leung Lamet al,, 1993; Troccazt al., 1995; Vassakt al., 1994b; Davatzikos and Prince, 1994; MacDoretldl. 1994;
1995; Gilhuijset al,, 1996) applicationsModality to model Barberet al, 1995; Christensept al, 1995b; Christensen
can be applied in gathering statistics on tissue morphologyet al, 1995a; Slomkat al, 1995; Christensent al., 1996;
(e.g.,for finding anomalies relative to normalized structures), Cuisenaireet al, 1996; Davatzikost al, 1996; Feldmar
and to segmentation tasks (Bajaslyal, 1983; Rizzoet al, et al, 1996) appear mostly iBD/3D MR or CT brain image
1995; Amit and Kong, 1996; Cuisenaiet al, 1996; Jain applications. The nature of the registration transformation is
et al, 1996). Monomodaltasks are well suited for growth  mostlycurved these applications are alwaiydrinsic, either
monitoring, intervention verification, rest-stress comparisons, segmentation basegr voxel property based, using the full
ictal-interictal comparisons, subtraction imaging (also DSA, image contentA proper (manual) initialization is frequently
CTA), and many other applications. The applications of desired. Some applications usggid transforms, but their
multimodal registration are abundant and diverse, predomi- clinical use is limited. Others ussatomical landmark&r a
nantly diagnostic in nature. A coarse division would be into deformation basis of aurvedtransformation; unfortunately
anatomical-anatomicategistration, where images showing such applications often require the transformation in large
different aspects of tissue morphology are combined, andimage areas to be interpolated from the nearest landmark
functional-anatomicalwhere tissue metabolism and its spa- transformations, which may prove unreliable. The use of

tial location relative to anatomical structures are refated intersubjectandatlas matching can notably be found in the
areas of gathering statistics on the size and shape of specific
9. SUBJECT structures, finding (accordingly) anomalous structures, and
transferring segmentations from one image to another.
VIIl. Subject
10. OBJECT
a. Intrasubject
b. Intersubject IX. Object
a. Head

c. Atlas

, i , : i 1. Brain or skull
When all of the images involved in a registration task are

acquired of a single patient, we refer to it edrasubject 2. kye
registration. If the registration is accomplished using two 3. Dental
images of different patients (or a patient and a model), this
is referred to asntersubjectregistration. If one image b. Thorax
is acquired from a single patient, and the other image is 1. Entire
somehow constructed from an image information database 5> Cardiac
obtained using imaging of many subjects, we namatlés '
registration. In literature, many instances of registration of 3. Breast

aReferences to monomodal and multimodal applications will be given inthe €. Abdomen
objectsection, since they are numerous, and moreover many papers are not
specific to one of the four application categories. 1. General
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2. Kidney adapted by Thirion (Thirion, 1994; Thirion, 1996a), using
only the extremal points of the crest lines. Van Herk (van

3. Liver Herk and Kooy, 1994) and Xiao (Xiao and Jackson, 1995)
d. Pelvis and perineum employedsurfacesfor registration by Chamfer matching, a
. technique which uses a pre-computed distance map for fast
e. Limbs computation of the distance between two surfaces (Borgefors,
1. General 1988). Liu (Liu et al, 1994) also used a Chamfer-like
technique, employingoresinstead of surfaces, with a full
2. Femur scale-space distance metric. A core can be defined as a multi-
3. Humerus scale instance of a medial axise., a structure, supported
4. Hand by a quench-like function, that runs “in the middle” of

some perceived object. Petti (Pettial, 1994) performed

f. Spine and vertebrae registration by maximizing the overlap, or, more precisely, by
o ) ) minimizing the “exclusive or” (XOR) overlap asegmented
The above list is, again, not theoretically complete, but s|ig structures. Finally, Lemieux (Lemiewt al, 1994b;
composed of those imaging areas encountered in receny gmieux and Jagoe, 1994) studied the accuracjrashe-

literature. Almost all reviewed papers will be cited in this basedregistration relative to the accuracy wiarker detec-
sectiorf, focussing on the paradigm used. We will break tion.

down this section according to the areas mentionedin the list.  3p morphing of CT skullsvas performed by Chris-
Hopefully this will give an idea of the specific approaches (ensen (Christenseet al, 1996), whoelastically morphed
and trends associated with each image area. Since manynants skulls to aratlas by locally minimizing the inten-
papers concern global head registration (177 out of over gy, difference, after an initiatigid alignment based on
300 reviewed papers), this subsection will be further divided 5natomical landmarksFang (Fanget al, 1996) performed
according to the modalities involvetlote that many papers  jnterspecies morphing of the skull basedaratomical land-
may have more than one application area, even though theymarks hetween human and macaque skulls.

only demonstrate a registration method in one arebhis Local elastic 3D intrasubject CTA registratiomas per-
implies that some areae,g.,_CT—SPECT registration, appear  formed by Bani-Hashemi (Bani-Hashemi al, 1996) and
to have been poorly examined, while in fact good methods Yeung (Yeunget al, 1994), by extending methods used in
have been developed in other areas that are instantly or easilyysa 1o 3D. The former used the DSC criterion, while the
transfered to the problem at hand. Many general papers dojatier searches for a matching voxel by finding the voxel
not detail a specific medical registration application. Such josest (in the squared sense) in grey value.

papers are mentioned at the end of this section.

) . . 10.1.2. Monomodal applications: rigid and affine MR reg-
10.1. Registration of head images istration
Many possible registration tasks can be defined on imagesgly interactive rigid registration methods are described by
of the human head, including all types of monomodal, worris (Morris et al, 1993) and Pietrzyk (Pietrzykt al,
multimodal, model, and patient registration of a plethora of 1994). Alpert (Alpertet al, 1990) registers by alignment of
image modglltles in various diagnostic and interventionist theprincipal axesand the center of gravity. Ettinger (Ettinger
settings. This makes for the prevalence of papers concernedy 5|, 1994b; Ettingeet al, 1994a) also uses these for a pre-
with registration of images of the head, possibly along with yegistration, but then refines the transformation using a semi-
the fact that the head can be considered a rigid body in manyaytomatically extracted intra-craniirfacewith a Gaussian
applications, while such a constraint cannot be met in many yejghted distance function. Approximately the same method

thoracic, abdominal, pelvic, and spinal images. is implemented by Rusinek (Rusinekal,, 1993), which does

o not weigh the distance, but suppliesafineinstead of a rigid
10.1.1. Monomodal applications: CT ; transformation. Their method is (an extension of) the well-
Intrasubject 3D CT registrationvas performed by Gaziec  ynown “head-hat’surfacematching technique, minimizing
and Ayache (Geziec and Ayache, 1992; Ayackeal, 1993, the squared distance between two segmented (skin) surfaces,

Guéziec, 1993) by registering “crest lines” (extremal lines of qriginally presented by Pelizzari and co-workers, including
the principal curvature) of surfaces. This technique was later | eyin (Levin et al, 1988), who documented its use on the
aThe reader is warned that readability was not foremost in our minds at the CUrrent application.Rigid surfacebased Chamfer matching
time of writing. Rather, this section serves a reference purpose. was used by Jiang (Jiarej al, 1992a; Jiangt al., 1992b)
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on manually segmented surfacesd extended by Zuk (Zuk  10.1.3. Monomodal applications: curved MR registration

et al, 1994), who added hierarchical surface point sam- Elastic deformation of segmented curves or surfacerre-
pling. Varioussurface basethethods using Besl's (Besl and sponding structures was performed on two-dimensional slices
McKay, 1992) ICP algorithm were implemented by Feldmar. by Nakazawa (Nakazawa and Saito, 1994), where the correct
In (Feldmar and Ayache, 1994), ICP was used directly on slices needed to be selectethnually The same approach,
segmented surfacés find anaffinetransformation. In (Feld-  except fully in three dimensionsvas followed by Chris-
mar and Ayache, 1996) the segmented surface was elaboratetensen and Haller (Christensem al, 1995a; Halleret al,

to an 8D structure: not only the spatial coordinates were 1995; Halleret al, 1996), using a fluid model morphing,
used in the cost (distance) function computation, but also the Davatzikos (Davatzikos and Prince, 1994; Davatzi&bal.,
surface normals and the principal curvatures. In (Feldmar 1996; Davatzikos, 1996), using elastic deformation of the
et al, 1996) the ‘surface’ needed no segmentation, since thebrain and ventricular surface, Sandor (Sandor and Leahy,
entire 3D image was considered to be a surface in 4D (spatial1994; Sandor and Leahy, 1995), using elastic deformation

coordinates plus intensity) space.

Rigid registrationbased onsegmented curvesas done
by Guéziec (Geziec, 1993), by using the crest lines of a
surface, which was extracted by usingleformable model.
Thirion (Thirion, 1994; Thirion, 1996a) also employed crest
lines, but used only their curvature-extrenpalints in the

of morphologically smoothed Marr-Hildreth edges, MacDon-
ald (MacDonaldet al, 1994), and Thirion (Thirion, 1995;
Thirion, 1996b), using elastic deformations usitgmons
where demons are particles than can either push or pull,
depending on what side of the boundary they are on.

Collins (Collinset al,, 1994a; Collingt al., 1994b; Collins
et al,, 1995) performedurvedregistration by local optimiza-

registration process. Pennec (Pennec and Thirion, 1995)jqn of the cross-correlation based on intensity and gradient

examined the precision of this method.

Collignon (Collignonet al,, 1994) performedigid regis-
tration by usingsegmentationeach set is segmented using
K-means clustering, and the registration is performed by
minimizing the “fuzziness” between corresponding segments.
He later used clustering of the joint histogram of the images
to find the transformation in dull image contentbased
method. Hill (Hill et al, 1994; Hill and Hawkes, 1994)
used a similar method based on minimizing the histogram
dispersion using the third order moment of the histogram.
Otherfull image contenbased methods were proposed by
Hajnal and Bandari. The former (Hajretlal,, 1995a; Hajnal
et al,, 1995b) performedgid registration by minimizing the
squared intensity differences in the brain, which needs to
be segmented first. The latter (Bandatial, 1994) finds
translation between the images to be registered by gluing

them together and regarding the compound as a time series:.

The second image is then registered to the first by finding
the occurrence of the cepstral echo of the first image in the
time series. Finally, Collignon (Collignoet al., 1995a) and
Maes (Maest al, 1996) figid transformations), simultane-
ously with Viola (Viola and Wells IIl, 1995; Viola, 1995;
Viola et al, 1996) @ffineand higher order transformations)
used maximization of the mutual informatior, , the relative
entropy, of the joint histogram to achieve registration.

Several methods, amongst whidname and mould
based registration, head-reggmented surfacesgistration,
anatomical landmarkased methods, and ratios of voxel vari-

values extracted at several scales of resolution. Gee{@g,
1995) employediser definedortical traces and sub-cortical
landmarks and interpolated the curved transformation in
undefined areas. Gee (Gekal, 1993; Geeet al,, 1994; Gee
etal, 1995a; Gee and Haynor, 1996) used Bayesian modeling
applied to variousegmentedtructures. Kruggel (Kruggel
and Bartenstein, 1995) performealastic registration by
minimizing the local squared intensity differences, after an
initial global Chamfer matching. Finally, Miller (Millegt al.,
1993) performecturvedregistration by using multi-valued
MR images, (T1 weighted, T2 weighted, segment values,
etc.) by minimizing the squared distance error and the elastic
energy.

10.1.4. Monomodal applications: PET

All of the encountered PET—PET registration methods of
brain images ar@D andrigid, excepting Unser, who pro-
vides anaffineregistration. Pietrzyk (Pietrzykt al., 1994)
designed a fullyinteractive method using graphical tools,
e.g.,rendering, cut-planes, edgedc. Zuk (Zuk et al,, 1994)
does Chamfer matching, improved with hierarchical data
sampling, onsegmentedurfaces. The remaining methods
arefull image contenbased: Andersson (Andersson, 1995)
registers by optimizing the cross-correlation values in image
areas near edges, where edges are defined by thresholding
gradientimages of the Gaussian filtered original. Eberl (Eberl
et al, 1996) and Unser (Unset al., 1995) find the optimal
transformation by optimizing the SAD (sum of absolute
differences of intensity values). Finally, Hoh (He! al,

ance based methods, where compared by Strother (Strothet993) also uses the SAD, and compares it to results obtained

etal, 1994).

by optimizing the SSC criterion.
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10.1.5. Monomodal applications: SPECT
The method of Eberl (Ebedt al, 1996) from the previous

DSA. Hua (Hua and Fram, 1993) compared the registration
performance of DSC on original images, DSC on grey-

section, using the SAD, also applies to SPECT registration. valued edge images, and of cross-correlation optimization.

A similar 3D rigid, using full image conteninethod, based

Leclerc (Leclerc and Benchimol, 1987) used generalized

on minimizing the sum of squared intensity differences, was cross-correlation for finding #bcal curvedtransformation,

suggested by Lange (Lang¢ al., 1993). Otheffull image

in a computedvay by implementation in a Fourier transfer-

contentbased methods were implemented by Barber, Junck,function setting. Cox (Cox and de Jager, 1994), finally,

Maintz, Meunier, and Pa&. Barber (Barbeet al, 1995)
finds anglobal affinetransformation by minimizing the optic
flow field. Meunier also uses minimizes the optic flow field,
but finds docal curvedtransformation. For a pre-registration,
he uses the optic flow method glob@idly. Junck (Junck
et al, 1990) finds 2Drigid transformations by optimizing

performedocal curvedregistration by locally minimizing the
intensity variance.

10.1.8. Other monomodal applications
Shields (Shieldst al, 1993) registere@D time seriesof
US carotid images in amffine way by locally matching

the cross-correlation. Also, the image midline in transversal the first order image grey value Taylor expansion, and
images is found by optimizing the correlation between the left validated the transformation by checking cross-correlation

and mirrored right part of the image. Maintz (Mairgzal,
1996a) and Pad (Pava et al, 1994) also directly use the
cross-correlation, but in @D rigid manner. The former uses

values. Zhao (Zhaet al,, 1993)affinelyregistered slices of
auto-radiographic imagery (scintigraphic images of cadaver
slices), by minimizing displacement afanually segmented

an hierarchical approach to optimization, the latter employs contours, or directly by minimizing the intensity value differ-

a pre-registration using principal axes. Zubal (Zuéihl,
1995) uses the head-hat methodsegmented surfacggos-
sibly combined withuser defined anatomical landmaris
find a3D rigid transformation3D rigid methods based solely
on user defined anatomical landmarkse compared with
methods based oexternal markergboth automaticallyand
semi-automaticallyetected) by Leslie (Lesliet al, 1995).
Finally, two interactive 3D rigid methods are reported on:
Rubinstein (Rubinsteiret al, 1996), who usesnatomical
landmarks and Stapleton (Stapletat al., 1995), where the

ences between images.

10.1.9. Multimodal applications: CT—MR
Unless otherwise stated, all of the registrations in this section
supplyglobal rigid transformations.

Hill (Hill et al, 1991a; Hillet al., 1993b) usediser iden-
tified anatomical landmarks, tcomputethe transformation.
Identified landmarksitheranatomicalor externally markegd
were also used by Maguire (Magugeal,, 1991), but coarse-
ly, since theaffinetransformation was based on optimizing

user defines the Tailarach coordinate system by pointing outthe cross-correlation in areas around the landmarks. Other
the midline, the AP (anterior-posterior) center line, and the full image contentbased methods using cross-correlation
OM (orbitomeatal) line, in the latter case aided by a single were proposed by van den Elsen (van den Elseéral,

lead marker.

10.1.6. Monomodal applications: portal images

1994), using the entire image, where the CT grey values are
remapped in a local linear fashion to improve correspondence
with the MR image, and van den Elsen (van den Elsen and

Since portal imaging appears exclusively in radiotherapy Viergever, 1993; van den Elsen, 1994; van den Eksteal,,
treatment settings (in fact, a portal image is obtained by 1995) and Maintz (Maintet al, 1994; Maintzet al., 1996¢),
measuring the transmission of the radiation beam, and henceoptimizing cross-correlation of ridgeness images extracted

is a 2D image), applications are only found in this specific from the original modalities.

Maintz later (Maingt al,

field. Only three method instances were found: Dong (Dong 1995; Maintzet al, 1996b) included optimization of edge-
and Boyer, 1996) and Hristov (Hristov and Fallone, 1996) ness cross-correlation and compared them.

find respectively global affineand aglobal rigid transforma-
tion by optimizing the cross-correlation. Radcliffe (Radcliffe
et al, 1993; Radcliffeet al,, 1994) uses basically the same

Wang (Wanget al,, 1994b; Wanget al,, 1995) and Mau-
rer (Maureret al, 1993; Maureet al, 1995b) usednvasive
fiducial markers and compared them teegmented surface

method, but speeds it up by using pseudo-correlation, whichregistration (Maureet al., 1994). Maurer also integrated the

limits the computations to randomly selected small regions.

10.1.7. Monomodal applications: DSA

Venot (Venotet al, 1983; Venotet al, 1984; Venot and
Leclerc, 1984) introduced the DSC criterion for finding a
rigid global registration of the X-ray images involved in

two methods into a single one (Maudral,, 1995a).

Other segmented surfackased methods were imple-
mented by Ge, Hemler, Jiang, Levin, Petti, Taneja, van Herk,
and Kooy. Ge (Get al,, 1996) used an ICP variation for the
optimization. Hemler (Hemleet al, 1994a; Hemleet al,
1994b; Hemlert al, 1995b; Hemleet al, 1995a; Hemler
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et al, 1996) used an automatically extracted surface with was van Herk (van Herk and Kooy, 1994), who usgjyid
manual correction. Levin (Leviat al, 1988) used the head- Chamfer matching oautomaticallyextracted surfaces.
hat method. Jiang (Jiangt al, 1992b) and Taneja (Taneja
et al, 1994) used the Chamfer matching technique, which 10.1.12. Multimodal applications: DSA—MR
was also used by van Herk (van Herk and Kooy, 1994), and Hill (Hill et al, 1991b) usechand drawnstructures, com-
Kooy (Kooy et al, 1994), except in their case the surface bined with a distance minimization which incorporated use of
segmentation wagutomated Petti (Pettiet al., 1994) found anatomical knowledge tagidly register the DSA vessel tree
an affine transformation by minimizing the “exclusive or” to the MR surface. Henri (Henet al., 1992) performedigid
overlap of segmented solids. One author implemented a non-egistration by least-squares fittinger identified anatomical
surface basedegmentatiomased method: Collignon (Col- landmarks The landmarks identified in the MR where
lignonet al, 1994) proposed the minimization of “fuzziness” projected into the (DSA) plane, after applying thigid
in corresponding segments found by K-means clustering of transformation to the MR image.
the original images.

Various authors usesurface basedegistrations in com-  10.1.13. Multimodal applications: PET—MR
parisons to other methods. Hemler (Hemédgral., 1995c) Pietrzyk (Pietrzylet al,, 1994) performsigid registration by
compared it to aframe based method, and optimization using various graphical objects like edges and cut-planes in
of the cross-correlation of remapped grey values. Vander-a a fully interactivemanner. Ge (Gest al, 1994) uses a
meulen (Vandermeulest al,, 1995) compared surface based more protocolized method, where the user identifies planes,
methods toframe based andanatomical landmarkbased starting with the inter-hemispheric fissure (midsagittal plane)
methods. Hill (Hill et al, 1993a) compared surface based to provide aregistration. Meyer (Meyetal., 1995) performs
registration and registration by minimizing the variance of affine registration usinguser identifiedpoints, lines and
intensity ratios. planes simultaneously in a weighted way. His method uses —

Besides the above mentioned cross-correlation methodsnextto Simplex optimization— distance error minimization by
other full image contentbased methods were proposed by the BFGS (Broyden-Fletcher-Goldfarb-Shanno) approach.
Collignon, Maes, and Wells. Collignon (Collignaat al., Neelin (Neeliret al,, 1993) finds aigid transformation by
1995hb) used clustering of the joint histogram to find the means ofiser identified anatomical landmarksSvans (Evans
optimal transformation. He also implemented optimizing the et al, 1989; Evanset al, 1996a) also uses these, com-

mutual information of the joint histogram, (Collignan al,, bined with afoam mouldfor patient immobilization. Later

1995a) a method also used by Maes, (Meksl., 1996) and Evans (Evanset al, 1991) usedfiducial marksprovided

Wells (Wells Il et al,, 1995; Wells lllet al., 1996). by a fiducial band strapped to the head, to findadfine
West (West et al., 1996) compared many (I#yinsic transformation. Maguire (Maguiret al., 1991) useduser

registration methods using a large image database with aidentified anatomical landmarkand external markersand
“gold” registration standard obtained usimyasive fiducial found anaffine or curvedtransformation by optimizing the

markers cross-correlation locally in the identified areas. Wahl (Wabhl
et al, 1993) uses the same points directly to findadfine
10.1.10. Multimodal applications: CT—PET transformation.

Rigid 3D transformations were performed by Alpert (Alpert Rigid surface basedmethods were employed by
et al, 1990) using the imaggwincipal axesand center of ~ Chen (Chenet al, 1987), Levin (Levinet al, 1988), and

gravity, by Chen (Cheet al,, 1987) and Levin (Leviret al,, Staib (Staib and Xianzhang, 1994) using the head-hat
1988) using the head-hat method, and Pietrzyk (Pietrzyk method. Turkington (Turkingtomt al, 1993; Turkington
et al, 1994), who used a fullinteractivemethod.Affinereg- et al, 1995) used the same method, lautomatedthe

istration was obtained by Wahl (Waét al., 1993), employing surface segmentation. Tsui (Tsat al, 1993) used the
user identifiedanatomical landmarksand external markers head-hat method, but computed the distance in 2D for more
and Maguire (Maguirest al, 1991), who optimized cross-  efficiency. Jiang (Jiangt al., 1992b) uses multi-resolution
correlation around such user identified anatomical landmarksChamfer matching.  Ardekani (Ardekardt al, 1994;

and external markers. The latter method is also used to supplyArdekani et al, 1995) uses segmentation obtained by

anelastictransformation. K-means clustering applied to the MRigid registration is
then performed by minimizing the PET grey value variance
10.1.11. Multimodal applications: CT—SPECT in each segment.

Maguire (Maguireet al,, 1991) also applied his method to Kruggel (Kruggel and Bartenstein, 1995) also uses Cham-
CT—SPECT registration. The only other instance we found fer matching, but only as a pre-registration. The final transfor-
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mation iselasticby locally finding the optimal shift minimiz-  Jiang (Jianget al, 1992b) used multi-resolution Chamfer
ing the squared intensity differences. Othdkrimage content ~ matching on semi-automatically segmented surfaces, as did
based methods were implemented by Andersson, Miller, Rizzo (Rizzoet al, 1995). Finally Rtia (Reriaet al, 1994)
Woods, Collignon, Maes, and Wells: Andersson (Andersson performed registration using the facial surface. Since such
et al, 1995) performedigid registration by simulating a  a surface is absent in a detailed way in SPECT images, a
PET image from the MR (by using a simple segmentation, calibrated laser range facial surface was used instead.

and assigning a plausible radioactivity to each segment),

and registering the simulated and real PET image using10.1.15. Multimodal applications: US or TMS—MR
optimization of cross-correlation near edges, where the edgesSince both TMS and US transducers can be hand-held de-
are obtained by thresholding a gradientimage. Miller (Miller vices, registration is often obtained usioglibrated coordi-
etal, 1993) performedurvedregistration using multi-valued  nate systemsinder the assumption that strict patientimmobi-
MR images, (T1 weighted, T2 weighted, segment values, lization can be maintained. A registration based on calibrated
etc.) by minimizing the squared distance error and the elastic coordinate system is by definitiaigid. Ettinger (Ettinger
energy. Woods performedgid registration by minimizing et al, 1996) registered TMS to pre-TMS acquired MR via
the standard deviation of the PET values corresponding to acalibrating the TMS probe to a laser range scanner. The laser
single MR grey value. Collignon (Collignoet al, 1995a), skin surface is then registered to the automatically segmented
Maes (Mae<t al, 1996) and Wells (Wells llket al, 1995; corresponding surface obtained from the MR. Erbe (Erbe
Wells IIl et al, 1996) performedigid registration by opti- et al, 1996) registered intra-operative US to pre-operative
mizing the mutual information contained in the joint image MR via a pre-operative US calibrated to the intra-operative

histogram. one. The pre-operative US (and hence, by calibration, the
Studholme, Strother, and West compared a large numberintra-operative one) is registeredidly to the MR by means
of rigid registration methods: the former (Studholeteal, of user identified anatomical landmark$lata (Hateet al,,

1995b; Studholmet al,, 1995a) used optimization of cross- 1994) calibrated 2D US to a 3D MR system, but refined
correlation, minimization of intensity variance, minimization the obtained rigid registration by local Chamfer matching on
of joint histogram entropy and dispersion by means of the semi-automatically extracted contours and surfaces.

third order moment, and manuallgnatomical landmark

registration. Strother (Strothet al,, 1994), comparettame 10.1.16. Multimodal applications: X-ray

and mould based registration, head-hs¢gmented surface Betting (Betting and Feldmar, 1995) registered MR (or CT) to
registrationanatomical landmarlkased methods, and ratios X-ray images 2D/3D) by a “silhouette” methodautomatic

of voxel variance based methods. West (West et al., 1996)extraction of the external contours in all involved images,
compared many (11) intrinsic methods to a registration basedfollowed by 3D rigidly transforming the MR, projecting the

on invasive fiducial markers Finally, Wang (Wanget al, transformed contours onto the X-ray plane, and minimizing
1996a) investigated the use of registration in a clinical mea- the contour distance using a variation of the ICP algorithm.
surement study. Lavallée (Laval€e and Szeliski, 1995; Lavaket al., 1996a)
registered a3D CT to two X-ray images, acquired at a
10.1.14. Multimodal applications: SPECT—MR known angle to one another. From the X-ray planes in 3D

Rubinstein (Rubinsteirt al, 1996) and Malison (Malison  space, the gegmentedexternal contours are projected out
et al, 1993) performedigid registrationinteractivelyusing of plane, creating a bundle. The intersection of the two X-
anatomical landmarksMaguire (Maguireet al,, 1991) also ray bundles defines an interior into which the CTrigidly
useduser identified anatomical landmarksr user identified placed, minimizing the distance of the CT external surface to
external markers, but performeadfineor curvedregistration the bundles.

by locally optimizing the cross-correlation in the identified Both Betting and Lavaié aim to use their methods in a
areas. Kruggel (Kruggel and Bartenstein, 1995) after an patient to modalityintra-operative setting, using the 2D X-
initial Chamfer match using segmented surfaces, performedray images for intermediaries. Therefore, their methods also
elasticregistration by minimizing the local squared intensity appear in thgatient to modalitysection, if experiments have
differences. Maintz (Maintzet al, 1996d) computed a been conducted using real patient data.

rigid transformation by optimizing the cross-correlation of In radiotherapy literature, three instancesigfd 2D/2D

the “edgeness” of the skin, computed using morphological X-ray to portal image registration were found. Eilertsen (Eil-
operators. The other reported methods arerigid and ertseret al,, 1994) finds the radiation field edges by means of
surface based:Turkington (Turkingtonet al, 1993) used a Radon transform. The X-ray (simulator) image is then reg-
the head-hat method with automated surface segmentationisteredautomaticallyto the portal images by aligning the field
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edge corners. Ding (Dingt al, 1993) also uselndmarks approaches using a CT image. Eitlamatomical landmarks
either geometricalor anatomica) but interactively defined. or fiducialswhere identified in the image and on the patient
Leszczynski (Leszczynskit al., 1995) needs the field edges using the probe, or the skin surface veegmentedrom the

to be definednteractively then performs Chamfer matching CT and indicated on the patient by probing many surface

to find the correct transformation. points. The obtained spatial locations where subsequently
registered using point or surface registration methods. The
10.1.17. Modality to model registration registration method using identifyinfiducials and probing

If models are obtained using statistics on differentimage data,them during surgery is also used by Fuchs (Fetts., 1996)
the distinction betweemodality to modeland modality to who usedskin markersand a CT image, and Maurer (Maurer
atlas registration is often vague. We subjectively draw the et al, 1995b), who used an MR image aingasive fiducials
line between use duzzy setgatlas) andocalized contours ~ The method of registering segmented surfadeom the CT
or surfaceymodels). The argument is that in the former case image and a probed patient skin surface is also used by
available information is used compounded, while in the latter Henderson (Hendersast al., 1994) using a CT image, and
case the information has been reduced to an average or moddRyan (Ryaret al, 1995) and Wang (Wangt al, 1994a) using
model. an MR image.

Modality to model registrations are nearly alwaygved Approaches usingtereo videamages of the patient where
Bajcsy (Bajcsyet al, 1983) performed elastic registration of proposed by Evans, Betting, and Henri. Evans (Etra,,
a CT feature space (sub-images containing average intensityl996b) identifiedanatomical landmark®n a stereo video
and edge information) to a model containing the brain and image as well as in pre-operatively acquired CT or MR
ventricular edges. Cuisenaire (Cuisenateal., 1996) also images to obtain registration. Betting (Bettiagal.,, 1995)
used the brain and ventricular edges, but obtained from MR and Henri (Henret al, 1995) used the skin surface extracted
images. They were extracted from the MR by segmentation from the video image and a pre-operative image to find the
using a morphological watershed and closing algorithm. The registration transformation. Betting used either CT or MR
model was obtained from a brain atlas obtained from a num- images, Henri MR images. The registration methods use
ber of cryosectioned brains, and registration was performedeither Chamfer matching or ICP.
by local Chamfer matching. Rizzo (Rizzet al, 1995) The extraction of the surface from stereo video images is
registered the cortical surface, obtairsgini-automatically = not an easy task, and many authors use the skin surface as
using edge detection, in alasticfashion to a compartment obtained bylaser range scanningp obtain this surface, and
model. Registration was performed on a slice-by-slice basis, register it with the skin surfaceegmentefrom pre-operative

after an initial manual axial correction. images. Cuchet (Cuchet al,, 1995) used this method with
MR images, Grimson (Grimsaet al., 1994a; Grimsowet al.,,
10.1.18. Patient to modality registration 1994b; Grimsoret al,, 1994c; Grimsoret al., 1995; Grimson

Without exception, the reported methods proviidgd trans- et al, 1996) used both CT or MR, and Harmon (Harmon
formations. This is not surprising, considering that it is et al, 1994) and Vassal (Vassat al, 1995) only CT. The
very hard to obtain more than surface information from the last author uses the method in a radiotherapy setting instead
patient. Paradoxically, there is often a clinical need for of the surgical theater, and also describes a different method,
curved transformation in the intra-operative occurrence of the which is to perform the registration of patient to pre-treatment
registration problem. 3D CT by means of two X-ray or two portal images acquired
Many authors report on usirggobesin solving the patient  at a known angle during the treatment. From all of the images
to modality registration problem. A probe is a device either involved contours are segmented. From the CT image,
optically or magnetically tracked, or mounted on a robot arm, DRRs (Digitally Reconstructed Radiographs) are created,
so the spatial location of the probe tip is known accurately and registered to the real X-ray or portal projection images
at all times. Bucholz (Bucholet al, 1994) used CT, MR  using minimization of the contour distance. Similar methods
and PET images acquired witkkin markers After the which use two acquired intra-treatment projection images
image acquisition, the marker locations are marked with ink. for registration to a pre-treatment CT image are described
During surgery, the patient wears a reference ring with LEDs by Vassal (Vassakt al, 1995), Gilhuijs (Gilhuijset al.,
clamped to the patient, which position is tracked optically. 1996), who uses bone ridges for contours, Gall (Gall and
The ring is calibrated to the patient head position by probing Verhey, 1993), who does not use contours,usér identified
the skin marker locations, hence the pre-operative images arénvasive markergtantalum screws), Leung Lam (Leung Lam
calibrated to the patient. Edwards (Edwaetlal, 1995b; Ed- et al, 1993), who used implanted and surfacerkers
wardset al., 1995a) used the probe in one of three registration and Bainville (Bainvilleet al, 1995), who reconstructs a
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surface from the two radiographs. Lemieux (Lemiemal., on image subcubes. The actual paradigm used is not reported.
1994a) uses a similar method, but in a surgical setting by A 2D rigid method based ogeometrical landmarkaas
optimizing the cross-correlation between two intra-operative proposed by He (Het al, 1991) for SPECT images. After
X-ray images and two DRRs from pre-operative CT. the user selects the mid-ventricular slice, the algorithm finds
The only truly 2D/3D method (all the other ones are the two local maxima along each horizontal image line,
intrinsically 3D/3D) was proposed by Betting (Betting and and then locates the local minimum in between them. It
Feldmar, 1995) who used the silhouette method describedthen least-squares fits a line trough the minima, and the
in section 10.1.16 for registration of a single X-ray to pre- resultant models the left ventricular long axis. Registration
operatively acquired CT or MR. is performed by aligning the found axes from two images.
A number of the above described methods are reported on 3D automatic voxel property/full image contebased
by Hamadeh (Hamadedt al,, 1995a), as used at a single site. methods are reported by Bacharach, Bettinardi, Eberl, Hoh,
Perault, and Slomka. All but Slomka’'s method aigid.

10.2. Registration of thoracic images Bacharach (Bacharacht al, 1993) performed PET-PET
Registration of imaging of the thorax has three major appli- (emission) registration by optimizing the cross-correlation
cation areasglobal, cardiacandbreast of the accompanying transmission scansle assumes the
transmission and emission scans are internally registered.
10.2.1. Registration of global thoracic images This is not always the case, as the patient is moved from the

Eberl (Eberlet al, 1996) performedD rigid registration scanner bed after the transmission scan for tracer injection.
of monomodalPET or SPECT images of the thorax by Bettinardi (Bettinardet al,, 1993) registers the PET transmis-
minimization of the SAD. In radiotherapy, twaD appli- sion to the emission scan, by makingecondtransmission
cations are reported. Moseley (Moseley and Munro, 1994) directly following the emission scan. He assumes the emis-
performedmonomodal affin@ortal image registration using  sion and second transmission scan registered, and can there-
a two-pass approach: local translation-only registration is fore register the first transmission to the emission scan by
performed in a number of user defined regions by optimizing optimizing the cross correlation between the two transmission
the cross-correlation. Then, the local shifts are combined scans. Cross-correlation is also used for registering different
(by least squares fitting) into a globaffine transformation. PET (emission) scans by Perault (Perailtl, 1995),i.c.,
Wang (Wang and Fallone, 1994) performragid registration rest and stress scans of one patient. Eberl (Ebedl,

of a portal to an X-ray (simulator) image byomentnatching 1996) finds the optimal transformation between two SPECT
of the extracted radiation field edges. The edges wereor PET images by optimizing the SAD. Hoh (Heh al,
extracted automatically by using a morphological gradient 1993) also uses the SAD on PET images only, and compares

and thresholding. the performance to optimizing the SSC. Finally, Slomka,
performsaffine atlasSPECT registration by minimization of
10.2.2. Registration of cardiac images the SAD, after an initial estimate using alignmenpdhcipal

Cardiac image registration almost exclusively involves the axes His atlas is created by averaging a large number of
use of3D monomodal scintigraphic imagese located only normal SPECT scans registered in the same way.
three exceptions. Tom (Torat al, 1994) performed®D Three authors report osurface based methods. De-
curved automaticegistration on series of X-ray angiographic clerc (Declercet al., 1996) performsaffine or curved au-
images, by matching the skeletons of segmented arteriestomatic registration by a variation of ICP on two SPECT
Savi (Saviet al,, 1995) obtaine@®D rigid registration of US images using a surface based on pruned edges detected in
and PET images by aligning thremser defined anatomical a 3D polar map. Feldmar (Feldmar and Ayache, 1994;
landmarks Thirion (Thirion, 1995) performe@D curved Feldmaret al, 1996; Feldmar and Ayache, 1996) also used
surfaceregistration on CT images using demons on seg- an ICP variation on SPECT images. See section 10.1.2 for
mented surfaces. a description. Pallotta (Pallot&t al, 1995) obtained 8D
Thirion applies the same method to SPECT images. Otherrigid transformation between two (emission) PET scans by
curved methods are reported by Goris and Lin. The for- Chamfer matching ourfacesobtained by thresholding the
mer (Goriset al, 1996) accomplisheautomatic 3D curved  accompanying transmission scans.
SPECT-SPECT registration by using an ICP variation on
extracted Canny edges in a 3-step way: first globally rigid, aMany PET scanners come _equipped with the‘po_ssibility qf transmission
then affine, and finally locallycurved by using a spline scanning prior to tracer injection _and normal emission scanning. A radioac-
. ? . tive line source is employed for this, and the resulting transmission image has
representation. The latter obtain8[@ curvedtransformation a CT-like character and is used for a tissue attenuation map in the emission
between two PET setaitomaticallyby avoxel baseanethod image reconstruction.
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10.2.3. Registration of breast images cations, an@D patient to modalityegistration applications.
Consensus of registration of breast images seems to be that i2D applications where proposed by Dong, Ding, Eilertsen,
is archetypal to the non-rigid registration problems. PerhapsFritsch, Gilhuijs, and Wang. Dong registered portal images
the thus induced complexity is the reason that little attempt in a 2D affine automatic fashioy optimization of the
has been made to solve the registration problem. This makesross-correlation. Ding (Dingt al, 1993) registered X-
Zuo's recent publication (Zuet al, 1996) all the more ray to portal images by means o$er identified landmarks
surprising, since it claims that serially acquired MR images Eilertsen (Eilertseet al,, 1994), in the same application, uses
(with and without a contrast agent) of a freely suspended alignment of the corners of the field edges, where the field
breastimaged using a breast coil, display aigyd motion, if edges are extracted using a Radon transform. Fritsch (Fritsch,
any at all. In this chapte8D motion correction is performed  1993; Fritsctet al,, 1994b; Fritsctet al., 1994a) registers por-
using thefull image contenemploying Woods’ (1993) min-  tal imagesrigidly by minimizing the distance between their
imization of variance of intensity ratios. The only other cores,i.e., their multi-scale medial axes. Gilhuijs (Gilhuijs
publication found (Kumaet al., 1996) performecutomatic and van Herk, 1993) finds2D affine automati¢ransforma-

3D curvedregistration on two MR images with and without tion by Chamfer matching extracted edges from X-ray and
contrast agent by minimizing the sum of squared intensity portal images. Finally, Wang (Warg al., 1996b) doe2D
differences between the images. For a pre-registration, thetranslation-only registration of portal images based on phase-

same procedure was first applied inafinemanner. only correlation in the Fourier domain.

3D patient to modalityregistration was done by Troc-
10.3. Registration of abdominal images caz (Troccazt al,, 1995), who achieved this bgalibrating
Registration of abdominal images appears only as applied toa US probe to the radiotherapy system, and registering pre-
renal or hepatic images in the literature. treatment CT or MR to the US images by meansueér

Renal images:Venot (Venot and Leclerc, 1984) applied segmentedurfaces. Four other approaches3i patient to
2D automatic rigidregistration to DSA images of the kidney modalitywere suggested, all of which involve the use of intra-
by minimizing the DSC criterion. In the same application treatment acquired portal or X-ray images. Bijhold (Bijhold,
of DSA images, Buzug (Buzug and Weese, 1996) found 1993) performed the registration by employinger defined
a 2D automatic affingransformation by combining local anatomical landmarksn a pre-treatment CT image and
translations found in image subcubes by minimizing the the intra-treatment portal or X-ray images. Gall (Gall and
entropy of the subtraction image efd (Rériaet al, 1995) Verhey, 1993) used a similar technique wiithiasive fiducial
performednon-image based 3D automatic rigidgistration markersand two X-ray images. Gilhuijs (Gilhuijst al.,
of US and SPECT images by calibrating the US scanner to 1996) found the transformaticautomaticallyusing 2 X-ray
the SPECT coordinate system, and acquiring the US imageor portal images using the technique described in 10.1.18.
while the patient is still on the SPECT gantry. Vassal (Vassakt al, 1995) used a similar technique for
Hepatic images:Venot (Venotet al, 1983; Venotet al., registration of pre-treatment CT or MR to the patient, using
1984) applied the same DSC strategy mentioned above totwo portal or X-ray images, or one of two other techniques,
SPECT images of the liver. Hoh (H&t al,, 1993) finds 8D namely acalibratedUS probe, osurface basedegistration
rigid automaticregistration in a similar way by minimizing  using a patient surface obtained byaibrated laser range
the SAD or SSC criterion. Sco8D rigidly registers CT or  finder.
MR images to SPECT images by using the head-hat method
on manuallydrawn contours (Scoét al, 1994), orusing CT ~ 10.5. Registration of limb images
external contours and contours obtained from an abdominalRegistration of limb images is reported on almost exclusively

fiduciaryband in SPECT (Scoét al., 1995). in the context of orthopedic interventions, notably at the
femur. Other application areas include the tibia, calcaneus
10.4. Registration of pelvic images and humerus, but there are usually few restrictions to adapt

Except for Venot and Studholme, all of the encountered a certain registration method to another region. The trans-
papers appear in the context of radiotherapy. Venot (Venotformations found are altigid, as they concern mainly the
and Leclerc, 1984) perform&bD rigid automaticregistration displacement of bones. Hence, modalities always include
of DSA images of the iliac arteries by means of optimizing CT or X-ray images. Since the bone contrast is very high,
the DSC criterion. Studholme found3D rigid automatic most methods, even those including segmentation tasks, can
transformations between MR and PET images by optimiza- be automated.
tion of the mutual information of the joint histogram. X-ray to CT registration was performed by Ellis and
The radiotherapy applications can be divide@Dappli- Gottesfeld Brown. Ellis (Elli€t al., 1996) finds £2D/3Dreg-
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istration between an (X-raypntgenstereogrammetric anal- ler et al,, 1995b) performsD rigid registration of CT and
ysis (RSA) and a CT image, by usingvasive fiducial MR images by means of an automatically extracted, user cor-
markersattached to the bone surface of the tibia. Gottes- rected surface. The surface is based on tracked Canny edges.
feld Brown (Gottesfeld Brown and Boult, 1996) finds an Hamadeh (Hamadeht al., 1995b) initially suggested the
automatic 2D/3Dtransformation by optimizing the cross- use of fouruser identified anatomical landmarksr 2D/3D
correlation between the X-ray and a DRR from the CT of the registration of X-ray to CT or MR images. This technique is
femur. only used for a pre-registration in later work (Hamaeehl,,

Monomodal 3D CTregistration was done by Hem- 1995c), whergatient to modalitfCT) is performed using a
ler (Hemler et al, 1995b) using surface registration on calibrated X-ray in an intermediary step. In the pre-operative
manually corrected, automatically segmented surfaces of CT, a surface is segmented irsami-automatedvay. From
calcaneus. Miich (Minch and Régsegger, 1993) performed the intra-operative X-ray image contours are extracted by
anautomaticregistration by optimizing the cross-correlation Canny-Deriche edge detection followed by hysteresis thresh-
of femural images. Jacq (Jacq and Roux, 1995) performedolding. The contour is then registered to the surface using
curved automatigegistration on images of the humerus by Lavallée’s “bundle” method described in section 10.1.16.
minimization of the local grey value differences. Lavallée himself uses the very same method (Laealind

Patient to CT modalityegistration was proposed by Lea, Szeliski, 1995; Lavadlé, 1996), but usintyvo X-ray images,
and Simon. Lea (Leat al, 1994) gives an overview of as described in section 10.1.16. In earlier work (Laell”
current orthopedic methods, notably applied to the femur et al, 1994), pre-operative CT is registered to the patient by
and tibia. Simon (Simoret al., 1995b) compareBwasive registering probed points to a surface segmented from the CT.
fiducial andsurface basednethods on femural images, and In later work (LavalEeet al., 1996b) the probed surface can
presents amutomaticmethod on the same images using an also be replaced by an US image. Szeliski (Szelisky and
ICP variation sped up by using Kd-trees (Sineiral., 1995a; Lavallée, 1994; Szeliski and Lavak, 1994; Szeliski and
Simonet al,, 1994). Lavallée, 1996), finally, performe@D curvedregistration

Two other applications are reported on: Ault (Ault and of CT images, given segmented surfaces, using local spline
Siegel, 1995; Ault and Siegel, 1994) registered US to CT deformations, where the surface distance computation is
images in anautomaticfashion by means ofeometrical simplified using a pre-computed octree distance map.
landmarks corners detected in the US and a surface model
obtained from the CT. Finally, Amit (Amit and Kong,
1996) performedD curved automatic modality to model
registration on X-ray images of the hand by graph matching it
to a model containing for nodes all anatomical flexion points.

10.7. General papers

Papers that cannot or cannot easily be classified in specific
objectclasses, are cited in this section. Typically, such papers

contain overviews of methods, general applicable registration

approaches (see Maintz (Maintz, 1996)), or correspondences
regarding aspects of some method.

10.6. Reqgistration of spinal images
Except for van den Elsen, all of the reported algorithms are
surface basedShe (van den Elsest al, 1994) perform8D
rigid automaticregistration in dull image contenbased way
by optimizing the cross-correlation between a CT and MR
image, where the CT grey values are first remapped using10.7.1. Overviews
localized linear transforms. Overviews of papers concerning medical image registra-
Burel and Bainville assume that the two spinal surfaces tion were presented by Maurer (Maurer and Fitzpatrick,
to be registered are given; no modality is named. The 1993), van den Elsen (van den Elsen al, 1993) and
former (Burelet al, 1995) performs3D rotation-only reg-  Viergever (Viergeveet al, 1995). Overviews not primarily
istration by decomposing each surface into its spherical literature oriented were given by Barillot (Barillat al,
harmonics. Optimization is performed by using their special 1993; Barillotet al, 1995) and Hawkes (Hawkesal,, 1995).
geometrical invariances. Bainville (Bainvillet al, 1995) Limited Overviews were presented by Collignon (Collignon
found a localcurved spline deformation using the local et al, 1993b) (surface based methods), Laal(Lavalée,
closest point of the surfaces combined with a regularization 1996) (computer aided surgery (CAS) methods), Lea (Lea
term. et al, 1995a; Leaet al, 1995b) (CAS methods includ-
Hemler (Hemleet al, 1994a; Hemleet al, 1994b; Hem-  ing a graph classification), and Mcinerney (Mclnerney and
Terzopoulos, 1996) (deformable models used in medical
aAlso known as stereophotogrammetry (SPG). imaging).
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10.7.2. Correspondences regarding existing methods many a common interest, yet are seldom integrated. Also,
Improvements to existing surface based methods are sugfegistration is rarely used in many clinical applications, even
gested by Collignon (Collignoret al, 1993a). Feld- though such applications may benefit from registered images;
mar (Feldmaret al, 1995) proposes an extension to ICP in many cases the potential of image registration is still an
to handle 2D/3D registration. Registration methods basedunknown. This can be accredited to the fact that registration
on point sets are addressed by Kanatani (Kanatani, 1994)research is relatively young area where many applications
who proposes extensions to existing rotation only methods, are concerned, to the fact that registration often involves new
and Krattenthaler (Krattenthalest al, 1994), who sug-  visualizations that possibly come with a steep interpretation
gests speed up techniques. Ways to speed up optimizatiodearning-curve, to the fact that registration accuracy is often
of mutual information based registration are suggested byvery hard to quantify sufficiently, to the logistic problems

Pokrandt (Pokrandt, 1996). involved in integrating digital (or even analog) data from
different machines often departments apart, to the extra
11. RELATED ISSUES equipment and time needed, and to the interdisciplinary gap.
The point of this long-winded periphrastic soliloquy is that
11.1. How to use the registration the questiorhow can the registration be usésifor the most
After a registration has been obtained, two questions appearpart still unanswered: even though the need for registration
paramountHow accurate is the computed registratioafd is born out of a clinical need, the tragiter obtaining the

How can it be used7he latter question presents us with an transformation parameters is still largely blank.

entire area of research of its own: the answer may be quite

simple, e.g.,only some statistical property of the subtracted 11.2. Validation

registered images is required, to highly complexg., a The other question concerning a computed registration entails
hybrid transparent stereo rendering that needs to be projectedhe accuracy. The answer is non-trivial for the simple reason
onto an operating microscope ocular is asked for. Suchthat a gold standard is lacking regarding clinical practice. We
complex uses invariably require non-trivial visualizations in can usually only supply a measure of accuracy by reference to
which segmentation must figure. This creates a paradox:controlled phantom studies, simulations, or other registration
on the one hand, many registration applications show how methods. Such measures are often lacking as concerns clin-
intertwined the problems of registration and segmentation canical needs: not only does a thus obtained reference accuracy
be, and hence the designer of the registration algorithm isrequire the need for an accuraegriability measure —since
tempted to draw on his own expertise in answering the ques-the accuracy cannot be made local in a clinical example, and
tion on how the registration is to be used; indeed, this questiontherefore needs to be supplied with reliability bounds—, but
must have figured in the registration algorithm design, which neither do such measures easily transfer to particular clinical
should have started out with a clinical need for registration. casese.g.,instances of abnormally distortive pathology.

On the other hand, once a registration is obtained, the problem There is a widespread quest for measures that somehow
of How to use it? poses interdisciplinary problems of a quantify registration accuracy. In our opinion, such a task is
previously unencountered nature. Be that as it may, fact paradoxical, because of the simple fact that if such measures
is that few registration papers attempt to follow up on the existed, they would be used for registration paradigms
use of the registration, and likewise few papers in a vast Which brings us to a positivistic statement on accurate
plethora of visualization papers employ registered images for cannot, with absolute certainty, quantify local registration
inpu. The cause for this may be found in the fact that errors. However, given that we can transfer error measures
visualization solutions are often highly specific and problem obtained by reference, we can eventually say thatihikely
dedicated, and in the interdisciplinary nature of the problem. for the error to exceed a certain bound.

In other words: the areas of registration and visualization ~ For many applications, the phase where sufficiently small
are still widely apart; not many registrations use state-of-the- errors can be ascertained has not yet been reached. In
art visualization, nor do many visualizations use registered many instances, proper accuracy studies are just starting.
input. Such solitary stances can be observed concerningWhat is particularly hampering to giving any statistics on
other research areas too: registration and segmentation haveertain methods is not only the incomparability of accu-

racy experiments done on particular sites—images are often
aMostly the area of segmentation-free imdgsionaddresses this problem,
but its applications to medical image problems are severely limited (Burt, °As with many bold statements, this one is not entirely true, in the sense
1993; Chouet al, 1995; Liet al, 1994a; Liet al, 1995; Pietrzyket al, that we cannot simply use any paradigmg., since we are restricted in
1996; Wassermaet al., 1994; Wasserman and Acharya, 1995; Wethél,, terms of computation time and convergence properties of the criterion used.
1993; Zhou, 1994). Nevertheless, the gist of the statement holds.
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proprietary, implementation and circumstances site specific, definitions. We defingrecisionas the typical systematic
circumstances are differeatc.— but also the imprecise use error that can be obtained when the registration algorithm
of the termsaccuracy, precisionand robustnessn many is supplied with idealized input. For example, a simple one
studies. The notion that public databases of representativedimensional shift optimization algorithm that does exhaustive
images are to be created, and validation protocols need tosearching with a resolution of two pixels, is expected to per-
be assembled, is only now emerging. The involved logistics, form with a precision of within two pixels when given ideal
cost, and effort, however, make prospects Utopian for many input, e.g.,two identical images. In a more complex vein,

registration applications. a local error measurement obtained at an invasive fiducial
marker used in the registration process can be regarded as
11.2.1. Validation definitions a precision measure. Precision measures can be obtained
Validation of a registration embodies more than the accuracy concerning the entire registration system, or applying to
verification. The list of items includes: specific components, like the patient (movement, artifacts),
. the acquisition, the paradigm, and the optimization, although
e Precision . .
we are tempted to remove the patient from the list, as
e Accuracy . . .
. modeling and quantizations are hard he&ecuracyis a more
¢ Robustness/stability . . o .
« Reliability direct measure, referring to the actual, “true” error occuring
: at a specific image location. Where precision is a system
e Resource requirements ; " . S
. . property, accuracy applies to specific registration instances.
e Algorithm complexity . . :
, 2 Accuracy will be the property that immediately concerns the
e Assumption verification S .
e Clinical use clinician: for example, the surgeon can point at the screen

and say “I must make an incisidmere How accurate can

Except for the first two items (treated in the next paragraph), this location be determined in the patient?”. Accuracy can
where the distinction is at times vague, unique definitions be divided intoqualitative and quantitativeaccuracy. The
can be supplied.Robustnessr stability refers to the basic  former can usually be supplied using simple visualization
requirement that small variations in the input should result tools and visual inspectiorg.g., when registering CT and
in small variations in the output,e., if input images are MR brain images, overlaying the segmented bone contours
aligned in a slightly varied orientation, the algorithm should onto MR slices supplies the clinician with a reasonable idea
converge to approximately the same resReliability is the of accuracy. Quantitativeaccuracy, as pointed out before,
requirement that the algorithm should behave as expectedneeds a ground truth that is unavailable in clinical practice,
given a reasonable range of possible clinical infesource and therefore needs to be emulated by reference to another
requirementgoncern the material and effort involved in the measure.
registration process. These should be reasonable relative Typically, evaluations of a registration method as concerns
to the clinical merit obtained from the registration. The accuracy and precision (and other criteria) may occur at
algorithm complexitynd related computation time should be a number of levels:syntheti¢c phantom pre-clinical, and
adapted to the time and resource constraints of the clinicalclinical. Thesyntheticlevel is entirely software-based. The
environment. Time can be a constraint in a two fold manner; images used at this level can be controlled in every aspect.
either a single registration needs to be performed on-line be-If images aresimulatedemulating the clinical acquisition,
cause of direct clinical requirements, or multiple registrations we speak of asoftware phantom The merits of software
appear in clinicalroutine, and need to be performed in a phantoms include the availability of ground truth, and the
reasonable time frame so as not to cause lag in the clinicalfact that realistic image degrading factors can be controlled.
track. Theassumption®on reality made in the paradigm The (physical)phantomlevel makes use of true image ac-
and optimization modeling should be verified to hold up quisitions, usually imaging anthropomorphic models. At
sufficiently in practice. Finally, thelinical useshould be this stage, ground truth is no longer available, but it can be
verified: does the registration provide in a clinical need, approximated with high accuracy by introducing markers into
and does its use outweigh available alternatives? In idealthe phantom, by using multiple acquisitions, and the fact that
circumstances, all of the criteria should be satisfied. However, phantom movements can be controlled. preclinicallevel
it is unrealistic to assume that all criteria can be met within involves using real patient (or volunteer) or cadaver data.
one application; the weight attached to each criterion is Ground truth can again only be approximated at this level,
application dependent, and a matter of judgment. although frequently accurately so by reference to a registra-

We have not yet definegrecision or accuracy For tion based on an established registration method. Cadaver
the problem at hand, we stray somewhat from conventional studies offer good opportunities here, as patient movement
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is absent or fully controlled, and patient friendliness can be the one principally used) is reported in (Andersson, 1995;
disregarded in obtaining the registration standard. StudiesCollignon et al, 1995a; Eberkt al, 1996; Hua and Fram,
using real patient data should optimally employ images drawn 1993; Hohet al, 1993; Lehmanret al, 1996; Leszczynski
from a database containing generic as well as acquisitionallyet al, 1995; Maureret al, 1995a; Maintzet al, 1996c¢;
and pathologically exceptional data. Finally, at dimical Maintzet al,, 1995; Maintzt al, 1996b; Simoret al,, 1995b;
level the registration method is used in the clinical routine, Studholmeet al, 1995b; Studholmet al, 1995a; Strother
at the intended application level. At this stage, a referenceet al, 1994; West et al., 1996). Most popular validation tech-
registration may or may not be available, and validation niques employ a physical phantom, possibly with controlled

should primarily be turned over to the clinicians involved. movement, and possibly with marking devices inserted or
attached. Examples are found in (Bijhold, 1993; Betting
11.2.2. Validation: a survey and Feldmar, 1995; Bettinardit al, 1993; Chenet al,

As mentioned before, validation studies are only now emerg- 1987; Dong and Boyer, 1996; Dirgj al,, 1993; Eberkt al,

ing. Many papers address some precision or accuracyl996; Grimsoret al, 1994a; Grimsomet al., 1994b; Grimson

validation at some level, but few extensively so, and even et al, 1994c; Grimsoret al, 1995; Grimsoret al, 1996;

then is precision often restricted to the algorithmic level. Gottesfeld Brown and Boult, 1996; Gluhchev and Shalev,

Given the effort and time that needs to be expended in a1993; Gall and Verhey, 1993; Holtcet al, 1995; Holton-

complete validation study, this is not surprising, nor would it Tainteret al, 1995; Lemieuxet al,, 1994a; Lavakeet al,

be a realistic expectation from authors presenting some new1994; Lavalée and Szeliski, 1995; Lavelt’et al, 1996b;

registration paradigm. Lavallée et al, 1996a; Leung Lanet al, 1993; Maurer
Those instances of validation we found are cited in this et al, 1993; McParland and Kumaradas, 1995; Moseley and

paragraph. We do not include robustness studies, nor preciMunro, 1994; Rtiaet al, 1994; Pallotteet al., 1995; Petti

sion studies not exceeding the algorithm leved,, authors et al, 1994; Turkingtonet al, 1993; Tanejeet al, 1994;

adding known transformations to input images to see if they Vassalet al, 1995). Simulator studiesg., studies were one

can be recovered by the algorithm. Validation studies are modality is simulated from the other to obtain a registration

frequently part of a paper presenting a new registration ap-standard, is found in (Cuchetal, 1995; Evangt al,, 19964,

proach, but some papers are dedicaatdirely to validation. Fritsch, 1993; Fritsclet al, 1994b; Fritschet al, 1994a;
Method validation by reference to external marker based Neelinet al,, 1993). Intra- and/or interobserver studies are

methods can be found in (Ardekaet al, 1995; Ayache performedin (Hilletal, 1991a; Malisoret al., 1993; Pietrzyk

et al, 1993; van den Elsen and Viergever, 1993; van den et al, 1994; Stapletoet al,, 1995). Finally, Hemler (Hemler

Elsenet al, 1994; van den Elseet al, 1995; Geet al, et al, 1994a; Hemleet al, 1995c; Hemleret al, 1995a;

1996; Leslieet al,, 1995; Mae<et al, 1996; Maureret al., Hemleret al,, 1996) performed cadaver studies using inserted

1995b; Maureret al, 1993; Maureret al, 1994; Maurer markers for reference.

et al, 1995a; Maint2t al., 1994; Maintzet al., 1996a; Simon

et al, 1995b; Turkingtonet al, 1995; West et al., 1996; 12. DISCUSSION

Zubalet al,, 1991). Validation by comparison to registration

based on probed points is found in (Evaetsal, 1996b; What trends can be observed from the current literature?
Ellis et al, 1996), by comparison to manually identified There is a definite shift in research from extrinsic to intrinsic
anatomical landmark based registration in (Anderssoa ., methods, although clinically used methods are often still
1995; Collinset al,, 1994a; Collinset al., 1994b; Evanst al., extrinsic. Of the intrinsic methods, the surface based methods

1989; Geeet al,, 1993; Geeet al,, 1995b; Hillet al., 1993a; appear most frequently, closely followed by “full image
Leslie et al, 1995; Moseley and Munro, 1994; Studholme content” voxel property based methods. Instances of the
et al, 1995b; Studholmet al,, 1995a; Strotheet al., 1994), latter type are slowly setting the standard for registration
and by comparison to frame based registration in (Collignon accuracy, a place formerly reserved for frame and invasive
et al, 1995a; Collignoret al,, 1995b; Geet al,, 1994; Henri fiducial based registrations. The application of full image
et al, 1992; Lemieuxet al, 1994b; Lemieux and Jagoe, contentvoxel property based methods is however still largely
1994; Strotheret al., 1994; Woodset al, 1993). Cross- limited in the extensive application field of intra-operative
method validation (reference to other intrinsic methods than registration and radiotherapy treatment related registration
. _ (both requiring patient to modality registration). Especially in
iﬁﬁfﬁ'énH(?'ﬁgS?é,ai'géi?ﬁja'ﬁ’eﬂftﬁéigﬁiuﬂ'iﬁg%ﬁ;ﬁ’zﬁﬁ’é the area of intra-operative registration, surface based methods
etal, 1993; Strotheet al, 1994; Turkingtoret al, 1993; Tanejet al, 1994; are dominant, and voxel based methods almost absent. The
Vassalet al., 1995) reasons may be clear: it is relatively easy to obtain a surface
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from the patient, either using laser scanning, probes, 2Dthan some instance of CT to MR registration, even though

imagery, etc, while obtaining reliable image information it is likely that the smaller error is more easily assessed by

for voxel property based methods is more difficult: intra- the naked eye in the latter case. The actual level of accuracy

operative imaging may not even be part of the normal surgical needed is in many applications still an unknown, and cannot

routine. If it is, images are usually 2D, and if 3D, of a accurately be quantified, even by the clinicians involved.

relative poor quality given common equipment and acquisi-  Intra-operative registration and methods on patient po-

tion sequence constraints in the operating theater. Moreoversitioning in radiotherapy are in clinical use with apparent

surface based methods are, on the average, still faster thagood results at a number of sites. On thagnosticuse of

voxel property based methods. However, a problem with registration (modality to modality), much less information

surface based methods is that they cannot cope with shiftcan be found. We suspect that, bearing in mind the possible

of relevant anatomy relative to the surface used in the reg- clinical potential of diagnostic registration, it is actually used

istration, which may be severely restraining to intra-operative very little. The reasons for this are, probably, in essence of

application. This problem may be solved using voxel based a logistic nature: unlike in the intra-operative scene (where

methods, but given the current state of affairs considering all imaging and operations take place in the same room),

registration methods, surgical protocol, and intra-operative in many multimodal diagnostic settings images are acquired

imaging, this will not be done in the very near future. In at different places, —often even at different departments— by

the case of radiotherapy treatment related registration (patientifferent people, at different times, often transfered to dif-

positioning, and patient position verification), the future will ferent media, and frequently evaluated by different specialist

certainly include more of voxel based methods: imaging (X- diagnosticians. Besides these logistic reasons, it is also

ray simulator images and portal images) is already part of often unclear how a registration can optimally be used in the

the common clinical treatment routine; radiotherapy relies diagnostic process. It has already been pointed out that much

almost exclusively on imaging for (tumor) localization, un- research can still be done in this area.

like surgery, where the visual impression is still the most  Many methods can still be considered barred from mean-

important cue. It is not unlikely that this will change soon ingful clinical application by the fact that they are as yet

for a number of surgical applications, given the current trend improperly validated. Although the proper verification meth-

of less and less invasive surgery that requires making use ofods are known in most cases, and coarsely laid out in the

advanced imaging technigues. previous section, for most applications the painstaking work
Many (but not alllmonomodalegistration problems ap- of conducting the many experiments involved is only now

pear to have been solved satisfactorily. We can accredit this tostarting.

the fact that a registration paradigm can usually be relatively

simple in the monomodal problem. Furthermore, given a

computed transformation, many applications do not require

complex visualization techniques, but can be adequately han-

dled using subtraction techniqueBlultimodal applications

cannot be discussed in general terms, the applications are

simply too diverse. It is tempting, but incorrect, to say

registration results are somewhat more satisfying in methods

involving scintigraphic imaging, perhaps because the rela-

tively blurry nature of the images allows for a slightly larger

displacement. Ire.g.,CT to MR registration, a displacement

of a pixel can sometimes be obvious to the naked eye, and

to obtain an accuracy in this order of magnitude, we cannot

avoid to investigate precision at the acquisition levelg (the

distortions induced by field inhomogeneity in MR images),

which are of the same order of magnit@dd¢owever, the

resolution of the images should not be used to formulate a

clinically relevant level of accuracy: it is very well possible

that a SPECT to MR registration requires a higher accuracy

aDistortion correcting algorithms have been proposed and are now available
to a certain extent; scanners are calibrated better, and magnetic fields are
adapted for minimum distortion.
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