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Abstract

This paper aims at describing the state of the art on linear assignment problems
(LAPs). Besides sum LAPs it discusses also problems with other objective functions
like the bottleneck LAP, the lexicographic LAP, and the more general algebraic LAP. We
consider different aspects of assignment problems, starting with the assignment poly-
tope and the relationship between assignment and matching problems, and focusing
then on deterministic and randomized algorithms, parallel approaches, and the asymp-
totic behaviour. Further, we describe different applications of assignment problems,
ranging from the well know personnel assignment or assignment of jobs to parallel ma-
chines, to less known applications, e.g. tracking of moving objects in the space. Finally,
planar and axial three-dimensional assignment problems are considered, and polyhedral
results, as well as algorithms for these problems or their special cases are discussed.
The paper will appear in the Handbook of Combinatorial Optimization to be published
by Kluwer Academic Publishers, P. Pardalos and D.-Z. Du, eds.
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1 Assignments

Assignment problems deal with the question how to assign n items (e.g. jobs) to n machines
(or workers) in the best possible way. They consist of two components: the assignment as
underlying combinatorial structure and an objective function modeling the ”best way”.

Mathematically an assignment is nothing else than a bijective mapping of a finite set
into itself, i.e., a permutation. Assignments can be modeled and visualized in different
ways: every permutation φ of the set N = {1, . . . , n} corresponds in a unique way to a
permutation matrix Xφ = (xij) with xij = 1 for j = φ(i) and xij = 0 for j 6= φ(i). We can
view this matrix Xφ as adjacency matrix of a bipartite graph Gφ = (V,W ;E), where the
vertex sets V and W have n vertices, i.e., |V | = |W | = n, and there is an edge (i, j) ∈ E iff
j = φ(i), cf. Fig. 1.

φ =

(

1 2 3 4
3 2 4 1

)

Xφ =











0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
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Figure 1: Different representations of assignments

The set of all assignments of n items will be denoted by Sn and has n! elements. We
can describe this set by the following equations called assignment constraints

n
∑

i=1

xij = 1 for all j = 1, . . . , n

n
∑

j=1

xij = 1 for all i = 1, . . . , n (1)

xij ∈ {0, 1} for all i, j = 1, . . . , n

Let A be the coefficient matrix of the system of equations (1). Matrix A is totally unimodu-
lar , i.e., every square submatrix of A has a determinant of value +1, −1 or 0. By replacing
the conditions xij ∈ {0, 1} by xij ≥ 0 in (1), we get a doubly stochastic matrix . The set of
all doubly stochastic matrices forms the assignment polytope PA. Due to a famous result
of Birkhoff [36], the assignment polytope PA is the convex hull of all assignments:

Theorem 1.1 (Birkhoff [36], 1946)
The vertices of the assignment polytope correspond uniquely to permutation matrices.

Differently said every doubly stochastic matrix can be written as convex combination of
permutation matrices. Further properties of the assignment polytope are summarized in
the following theorem:

Theorem 1.2 (Balinski and Russakoff [22], 1974)
Let PA be the assignment polytope for assignments on a set N with n elements. Then
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1. dim PA = (n− 1)2.

2. Every of the n! vertices of PA coincides with
∑n−1
k=0

(n
k

)

(n− k − 1)! different edges.

3. Any two vertices are joined by a path with at most two edges, i.e., the diameter of PA
is 2.

4. PA is Hamiltonian.

A polytope is Hamiltonian, if there exists a closed path along its edges which visits every
vertex of the polytope just once.

Consider a bipartite graph G = (V,W ;E) with vertex sets V = {v1, v2, . . . , vn} and
W = {w1, w2, . . . , wn}, and edge set E. A subset M of E is called a matching , if every
vertex of G is incident with at most one edge from M . The cardinality of M is called
cardinality of the matching. The maximum matching problem asks for a matching with as
many edges as possible. A matching M is called a perfect matching , if every vertex of G is
incident with exactly one edge from M , i.e., |M | = n. Evidently, every perfect matching is
a maximum matching and corresponds to an assignment. The number of different perfect
matchings in a bipartite graph G is given by the permanent of the corresponding n × n
adjacency matrix A = (aij) defined by

aij :=

{

1 if (vi, wj) ∈ E

0 if (vi, wj) 6∈ E

The permanent per(A) is defined by

per(A) :=
∑

φ∈Sn

a1φ(1)a2φ(2) . . . anφ(n).

The numerical evaluation of a permanent (and the determination of the number of different
perfect matchings in a graph G) is #P-complete (Valiant [162]). This implies that the
determination of the number of different perfect matchings in G is at least as hard as any
NP-complete problem. The following theorem due to Hall [99] states a necessary and
sufficient condition for the existence of a perfect matching in a bipartite graph. Halmos
interpreted such a perfect matching as a marriage between ladies in the set V and gentlemen
in set W , and due to this interpretation Hall’s theorem is known as Marriage theorem. For
a vertex v ∈ V let N(v) be the set of its neighbors, i.e., the set of all vertices w ∈W which
are connected with v by an edge in E. Thus N(v) contains the friends of v. Moreover, for
any subset V ′ of V let N(V ′) =

⋃

v∈V ′ N(v).

Theorem 1.3 (Marriage theorem, Hall [99], 1935)
Let G = (V,W ;E) be a bipartite graph. G contains an assignment (perfect matching,
marriage) if and only if |V | = |W | and for all subsets V ′ of V

|V ′| ≤ |N(V ′)| (Hall condition)

This theorem says that by checking the exponentially many subsets V ′ of V we can de-
cide, whether the graph G has a perfect matching or not. Hopcroft and Karp [103] gave
a polynomial-time algorithm to decide this question. They construct a perfect matching,
if it exists, in O(|E|

√

|V |) steps. Alt, Blum, Mehlhorn and Paul [9] improved the com-
plexity for dense graphs by a fast adjacency matrix scanning technique and obtain an
O(|V |1.5

√

|E|/ log |V |) implementation for the Hopcroft-Karp algorithm.
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The decision can also be made faster by a randomized algorithm which is a Monte-Carlo
approach. This algorithm may err with an arbitrarily small probability in the case that its
output does not confirm the existence of a matching. The randomized algorithm is based on
the relationship between the determinant of the Tutte matrix of a graph and the existence
of a perfect matching (Tutte [161]). The Tutte matrix A(x) = (xij) of an (undirected)
graph G = (V,E) is a skew symmetric matrix with variable entries xij , xij = −xji, where
xij = xji ≡ 0, if (i, j) is not an edge of G.

Theorem 1.4 (Tutte [161], 1947)
Let A(x) be the Tutte matrix of graph G = (V,E). There exists a perfect matching in G, if
and only if the determinant of A(x) is not identically equal to 0.

A randomized algorithm to decide whether G has a perfect matching can be obtained
by generating xij uniformly at random from {1, 2, . . . , 2|E|} and by computing the deter-
minant of the corresponding Tutte matrix A(x), and eventually repeating this process a
fixed number of times. The probability of an error can be estimated by applying a result
of Schwarz [157] on the probability of hitting roots of a given polynomial. By applying
Schwartz’s results one gets that the error probability of the above randomized algorithm is
equal to (1/|E|)r , where r is the number of repetitions and |E| is the number of edges of
G. Since an n × n determinant can be evaluated in O(n2.376) time (see Coppersmith and
Vinograd [60]), and by assuming constant time for the generation of a random number, this
randomized algorithm is faster than the best existing deterministic algorithm, at least in
the case of dense graphs. This procedure does, however, not compute a perfect matching,
it just decides - with an arbitrarily small probability of error - whether the given graph has
one. To compute a perfect matching in G we may delete edges of G and test whether the
remaining graph has a perfect matching. This procedure is repeated until no further edges
can be deleted without destroying all perfect matchings in the remaining graph. Obviously,
this remaining graph is then a perfect matching. Instead of this naive algorithm Mulmuley,
Vazirani and Vazirani [129] propose a parallel algorithm which performs a matrix inversion
only once. The basic idea relies on assigning random weights to the edges of the graph and
on generating the random variables xij in the Tutte matrix so that the perfect matching
with minimum weight is unique. Then, an easy-to-check condition is given for the member-
ship of a certain edge to this minimum weighted perfect matching. This algorithm requires
O(|V |3.5|E|) processors to find a perfect matching in O(log2 |V |) time.

Cechlárová [57] gives a necessary and sufficient condition that a bipartite graph G
contains a unique perfect matching. This is the case, if the rows and columns of the
adjacency matrix can be permuted by φ such that in the permuted matrix (aφ(i)φ(j)) all
1 entries lie on the main diagonal or below. Cechlárová shows that graphs with a unique
perfect matching can be recognized in O(|E|) time and the same time complexity is needed
for constructing the unique perfect matching.

The maximum matching problem is particularly easy to solve in so-called convex bipar-
tite graphs (Glover [89]). A bipartite graph G = (V,W ;E) with vertex sets V and W and
edge set E is convex , if for all i, k, i < k, and j

(i, j), (k, j) ∈ E ⇒ all (i+ 1, j), . . . , (k − 1, j) ∈ E.

Glover described the following simple algorithm for finding a maximum matching in convex
bipartite graphs:

1. Compute for every j ∈W the label π(j) := max {i|(i, j) ∈ E}.
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2. Start with the empty matching M .
For i = 1, 2, . . . , |V | do:
If there exists an edge (i, j) with unmatched vertex j, then enlarge the matching by
the edge (i, k) with minimum value π(k).

A straightforward implementation of this algorithm has complexity O(n2). Using a method
of Gabow and Tarjan [86] the maximum matching can even be found in linear time. Match-
ings in convex graphs are used in the solution of so-called terminal assignment problems.
Terminal assignment problems arise in connection with the design of integrated circuits.
They can be described as follows: each of n entry terminals positioned on the upper layer
of a channel has to be assigned to one of the m exit terminals positioned in the lower layer.
The density d(x) of a given assignment at position x is the number of terminals in the
upper layer, left to x, which are connected to an exit in the lower layer right to position x,
see Fig. 2. The density of an assignment is the maximum of d(x) taken over all positions
x. If there are two upper layers, the density is computed for each upper layer separately

o

x x

d(x d(x)=1)=2

o

Figure 2: An instance of the terminal assignment problem. The density
of this assignment is 2 and is attained at position x0, d(x0) = 2.

and the total density is the maximum of these two densities. In the terminal assignment
problem the terminals situated in two upper layers are to be assigned such that the resulting
channel routing problem has minimum total density. Rote and Rendl [155] solve the 2-layer
terminal assignment problem by a recursive algorithm in linear time using matchings in
convex bipartite graphs.

Flows in networks offer another model to describe assignments. Let G be the bipartite
graph introduced before. We embed G in the network N = (N,A, c) with node set N , arc
set A and arc capacities c. The node set N consists of a source s, a sink t and the vertices
of V ∪W . The source is connected to every node in V by an arc of capacity 1, every node in
W is connected to the sink by an arc of capacity 1, and every edge in E is directed from V
to W and supplied with an infinite capacity. A flow in network N is a function f :A→ IR
with

∑

x∈V ∪W

f(x, y) =
∑

x∈V ∪W

f(y, x) , for all y ∈ V ∪W (2)

0 ≤ f(x, y) ≤ c(x, y), for all (x, y) ∈ A (3)

Equalities (2) and (3) are called flow conservation constraints and capacity constraints,
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respectively. The value z(f) of the flow f is defined as

z(f) :=
∑

x∈N

f(s, x) .

1

s t
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Figure 3: Perfect matching in a bipartite graph and corresponding
network flow model. A minimum cut is given by {s, b, b′}. Th
dashed edges contribute to the value of the cut.

The maximum network flow problem asks for a flow with maximum value z(f). Obviously, a
maximum integral flow in the special network constructed above corresponds to a matching
with maximum cardinality. A cut in the network N is a subset C of the node set N with
s ∈ C and t 6∈ C. The value u(C) of cut C is defined as

u(C) :=
∑

x∈C, y 6∈C
(x,y)∈A

c(x, y) .

Ford and Fulkerson’s famous Max Flow-Min Cut Theorem [85] states that the value of a
maximum flow equals the minimum value of a cut.

This leads immediately to the matching theorem of König [116]. Given a bipartite
graph G, a vertex cover (cut) in G is a subset of its vertices such that every edge is incident
with at least one vertex in this set.

Theorem 1.5 (König’s Matching Theorem, 1931)
In a bipartite graph the minimum number of vertices in a vertex cover equals the maximum
cardinality of a matching.

Let us now translate this theorem in the language of 0-1 matrices. Given a bipartite graph
G = (V,W ;E) with |V | = |W | = n, we define an n× n 0-1 matrix B = (bij) as follows

bij :=

{

0 if (i, j) ∈ E

1 if (i, j) 6∈ E

A zero-cover is a subset of rows (columns) of matrix B which contains all 0 elements. A
row (column) which is an element of a zero-cover is called a covered row (covered column).
Now we get

Theorem 1.6 There exists an assignment φ with biφ(i) = 0 for all i = 1, . . . , n, if and only
if the minimum zero cover has n elements.
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0 0 0∗ 1
1 0∗ 1 1
0∗ 0 1 1
1 0 1 0∗











Figure 4: 0-1 matrix model of a bipartite graph and the corre-
sponding minimum vertex cover which corresponds to the cut in
Fig. 3. An assignment is given by the entries marked by ∗.

A maximum matching corresponds uniquely to a maximum flow in the corresponding net-
work N , and therefore to a minimum cut C in this network. From this minimum cut we
can construct a zero-cover in the adjacency matrix: if node i ∈ V of the network does not
belong to cut C, then row i is an element of the zero-cover. Analogously, if node j ∈ W
belongs to cut C, then column j is an element of the zero-cover.

2 Linear Sum Assignment Problems (LSAPs)

In this section we deal with the classical linear sum assignment problem (LSAP). We first
introduce the problem and some alternative interpretations, and then discuss some appli-
cations of the LSAP.

Let us return to the original model where n items (e.g. jobs) are to be assigned to n
machines (or workers) in the best possible way. Let us assume that the assignment of job
i to machine j incurs a cost cij. In order to complete all jobs in the cheapest possible way,
we have to minimize the objective function

n
∑

i=1

ciφ(i) , (4)

i.e., we have to find an assignment φ∗ which minimizes (4). Thus, we get the linear sum
assignment problem (LSAP) as

min
n
∑

i=1

ciφ(i) . (5)

Based on the description (1) of the set of all assignments (see Section 1), the LSAP can
also be formulated as a 0-1 linear program:

min
n
∑

i=1

cijxij

n
∑

i=1

xij = 1 j = 1, . . . , n

n
∑

j=1

xij = 1 i = 1, . . . , n

xij ∈ {0, 1} i, j = 1, . . . , n.

(6)
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Due to Theorem 1.1 we can relax the conditions xij ∈ {0, 1} to xij ≥ 0 and solve the
corresponding linear program, denoted by LP: any basic solution of this linear program
corresponds to a permutation matrix. We will see in Section 3 that LP-based algorithms
belong to the most important solution techniques for the LSAP. Often they tackle the dual
linear program: Let ui, 1 ≤ i ≤ n, and vj , 1 ≤ j ≤ n, be dual variables. Then the dual of
the linear program LP is given by

max
n
∑

i=1

ui +
n
∑

j=1

vj

ui + vj ≤ cij i, j = 1, . . . , n

ui, vj ∈ IR i, j = 1, . . . , n.

(7)

Keeping in mind the matching interpretation of assignments, the LSAP can be equiva-
lently formulated as a matching problem: given a bipartite graph G = (V,W ;E) with edge
weights cij for all edges (i, j) ∈ E, find a perfect matching with minimum weight:

min







∑

(i,j)∈M

c(i, j):M is a perfect matching







.

The LSAP can be solved efficiently, and the design of efficient solution methods for this
problem has been an object of research for many years. There exists an amazing amount
of algorithms for the LSAP, ranging from the simple Hungarian method to more recent
developments involving sophisticated data structures and including parallel algorithms.
(See Section 3 for a more detailed discussion of these topics). There are, however, some
simple cases where an optimal solution of the LSAP can be given before hand, even if
the coefficients cij of the cost matrix are not known. These cases are related to Monge
properties of the cost matrix C.
A matrix C = (cij) is said to be a Monge matrix (cf. Hoffman [102]), if it fulfills the
following conditions:

cij + ckl ≤ cil + ckj , for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n. (8)

It is easy to show that the identical permutation is an optimal solution of an LSAP with
a cost matrix which fulfills (8). This remains true, even if condition (8) is relaxed to the
so-called weak Monge property (cf. Derigs, Goecke and Schrader [69])

cii + ckl ≤ cil + cki , for 1 ≤ i < k ≤ n, 1 ≤ i < l ≤ n. (9)

Analogously, it can be shown that the permutation φ defined by φ(i) = n− i+1 for all i, is
an optimal solution of an LSAP with cost matrix C fulfilling the inverse Monge property:

cij + ckl ≥ cil + ckj for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n. (10)

Obviously, Monge properties depend on the proper numbering of the rows and columns
of the matrix. A matrix C is called a permuted Monge matrix , if there exists a pair of
permutations (φ,ψ) such that the matrix C(φ,ψ) = (cφ(i)ψ(j)) obtained from C by permuting
its rows by φ and its columns by ψ, is a Monge matrix, see Burkard, Klinz and Rudolf [42].
Due to a result of Dĕıneko and Filonenko [66] it can be recognized in O(n2) time, whether an
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n×n matrix C is a permuted Monge matrix. Moreover, the appropriate permutations φ, ψ
for the rows and the columns can also be found within this time bound. As a consequence,
the LSAP with a permuted Monge cost matrix can be solved in O(n2) time. The reader is
referred to Burkard et al. [42] for a detailed discussion of Monge properties, and a description
of the algorithm of Dĕıneko and Filonenko.

An important special case of the LSAP with permuted Monge cost matrix arises if the cost
coefficients have the form

cij = uivj

with nonnegative numbers ui and vj. Such an LSAP can simply be solved in O(n log n)
time by ordering the elements ui and vj.

Theorem 2.1 (Hardy, Littlewood, and Pólya [101], 1952)
Let 0 ≤ u1 ≤ . . . ≤ un and 0 ≤ v1 ≤ . . . ≤ vn. Then for any permutation φ

n
∑

i=1

uivn+1−i ≤
n
∑

i=1

uivφ(i) ≤
n
∑

i=1

uivi.

Let us now discuss some applications of the linear sum assignment problem. LSAPs
occur quite frequently as subproblems in more involved applied combinatorial optimization
problems like the quadratic assignment problem, traveling salesman problems or vehicle
routing problems. Classical direct applications include the assignment of personnel (cf. e.g.
Machol [122], Ewashko and Dudding [78]), and the assignment of jobs to parallel machines,
but LSAPs have quite a number of further interesting applications. Neng [130] modeled the
optimal engine scheduling in railway systems as an assignment problem. Further applica-
tions in the area of vehicle and crew scheduling are described by Carraresi and Gallo [49].

Another application concerns problems in telecommunication, in particular in earth - satel-
lite systems. Usually the data to be remitted are buffered in the ground stations and are
sent in very short data bursts to the satellite. There they are received by transponders and
then, are transmitted again to the receiving earth station. A transponder just connects one
sending station with a receiving station. For a fixed time interval of variable length λk the
n sending stations are connected with the receiving stations via the n transponders onboard
the satellite, i.e., a certain switch mode is applied. Mathematically, a switch mode Pk cor-
responds to a permutation matrix. Then the connections onboard the satellite are changed
simultaneously and in the next time interval new pairs of sending and receiving stations
are connected via transponders, i.e., a new switch mode is applied. Given an (n×n) traffic
matrix T = (tij), where tij describes the amount of information to be remitted from the i-th
sending station to the j-th receiving station, we have to determine the switch modes Pk,
k = 1, 2, . . ., and the nonnegative lengths λk of the corresponding time slots during which
the switch modes Pk are applied, such that all data are remitted in the shortest possible
time. Summarizing, our problem consists of finding suited switch modes and corresponding
lengths for the time slots during which the switch modes are applied. This leads to the
following model:

min
∑

k
λk

s.t.
∑

k
λkp

(k)
ij ≥ tij , for 1 ≤ i, j ≤ n

λk ≥ 0 , for all k

(11)
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Since here the time is split among the participating stations, all of them having access to
the satellite, such a traffic model is called time-division-multiple-access (TDMA) model.
The problem can be transformed to an LSAP, if a system of 2n fixed switch modes
P1, . . . , Pn, Q1, . . . , Qn is installed onboard the satellite, where

∑

k

Pk =
∑

l

Ql = 1

and 1 is the matrix with 1-entries only. For details see Burkard [38].

Brogan [37] describes assignment problems in connection with locating objects in space.
Let us consider n objects which are detected by two sensors at geographically different
sites. Each sensor measures the angle under which the object can be seen, i.e., it provides
n lines, on which the objects lie. The location of every object is found by intersecting the
appropriate lines. The pairing of the lines is modeled as follows: let cij be the smallest
distance between the i-th line from sensor 1 and the j-th line from sensor 2. Due to
small errors during the measurements, cij might even be greater than 0 if some object is
determined by lines i and j. Solving an LSAP with cost matrix C = (cij) leads to very
good results in practice. A similar technique can be used for tracking n moving objects
(e.g. missiles) in space. If their locations at two different times t1 and t2 are known, we
compute the (squared) Euclidean distances between any pair of old and new locations and
solve the corresponding assignment problem in order to match the points in the right way.

For some further applications of assignment problems, including the optimal depletion of
inventory, see Ahuja, Magnanti, Orlin and Reddy [2].

There are also other possibilities for the choice of the objective function in assignment
problems. For example, if cij is the time needed for machine j to complete job i and all ma-
chines run in parallel, the shortest completion time for all jobs is given by max1≤i≤n{ciφ(i)}.
This leads to the linear bottleneck assignment problem (LBAP) which will be treated in Sec-
tion 5. Other objective functions will be discussed in Section 6.

3 Algorithms for the LSAP

A large number of algorithms, sequential and parallel, have been developed for the linear
sum assignment problem (LSAP). They range from primal-dual combinatorial algorithms,
to simplex-like methods, cost operation algorithms, forest algorithms, and relaxation ap-
proaches. The worst-case complexity of the best sequential algorithms for the LSAP is
O(n3), where n is the size of the problem. There is a number of survey papers and books
on algorithms, e.g. Derigs [68], Martello and Toth [126], Bertsekas [30], Akgül [6], and the
book on the first DIMACS challenge edited by Johnson and McGeoch [106]. Among papers
reporting on computational experience we mention Derigs [68], Carpaneto, Martello and
Toth [51], Carpaneto and Toth [56], Lee and Orlin [121], and some of the papers in [106].

Most sequential algorithms for the LSAP can be classified into primal dual algorithms
and simplex-based algorithms. Primal-dual algorithms work with a pair consisting of an
infeasible primal and a feasible dual solution which fulfill the complementarity slackness
conditions. Such algorithms update the solutions iteratively until the primal solution be-
comes feasible, while keeping the complementary slackness conditions fulfilled. At this point
the primal solution is also optimal, according to duality theory.
Simplex-based algorithms are special implementations of the primal and the dual simplex
algorithm for linear programming. These algorithms can be applied to solve the LSAP
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due to Theorem 1.1. Although simplex algorithms are not polynomial in general, there are
special polynomial implementations of them in the case of the LSAP.
More recently, an interior point algorithm has been applied to the LSAP, see Ramakrishnan,
Karmarkar, and Kamath [152]. This algorithm produces promising results, in particular
when applied to large size instances.

From the computational point of view very large scale dense assignment problems with
about 106 nodes can be solved within a couple of minutes by sequential algorithms, see
[121].

A number of parallel approaches developed for the LSAP show that the speed up
achieved by such algorithms is limited by the sparsity of the cost matrices and/or the de-
creasing load across the iterations, see e.g. Balas, Miller, Pekny, and Toth [14], Bertsekas and
Castañon [31, 32], Castañon, Smith, and Wilson [53], as well as Wein and Zenios [167, 168].
More information on these topics is given in Section 3.4.

3.1 Primal-Dual Algorithms

Primal-dual algorithms work with a pair of an unfeasible primal solution xij , xij ∈ {0, 1},
1 ≤ i, j ≤ n, and a feasible dual solution ui, vj , 1 ≤ i, j ≤ n, which fulfill the complementary
slackness conditions:

xij(cij − ui − vj) = 0 , for 1 ≤ i, j ≤ n (12)

We denote c̄ij := cij−ui−vj and call c̄ij reduced costs with respect to the dual solution ui, vj .
This pair of solutions is updated iteratively by means of so-called admissible transformations
of the costs matrix C. Also the process of determining the first pair of primal and dual
solutions can be seen as an admissible transformation. A transformation T of a matrix
C = (cij) to a matrix C̃ = (c̃ij) is called admissible if for each permutation φ of 1, 2, . . . , n
the following equality holds:

n
∑

i=1

ciφ(i) =
n
∑

i=1

c̃iφ(i) + z(T ) ,

where z(T ) is a constant which depends only on the transformation T . Clearly, an admis-
sible transformation does not change the order of the permutations (feasible solutions of
the LSAP) with respect to the value of the objective function. Hence the LSAPs with cost
matrices C and C̃ are equivalent. We may assume without loss of generality that the entries
of C are nonnegative. (Otherwise we could add a large enough constant to all entries of C.
This results in just adding a constant to the objective function, and hence, does not change
the optimal solution of the problem but only its optimal value.)
If all entries c̃ij of matrix C̃ are nonnegative and there exists a permutation φ∗ such that
c̃iφ∗(i) = 0, then φ∗ is an optimal solution of the original LSAP with cost matrix C. The

optimal value is equal to z(T ), where T is the transformation from C to C̃.

Primal-dual algorithms differ on 1) the way they obtain their first pair of a primal and a
dual solution fulfilling the complementary slackness conditions, and 2) the implementation
of the update of dual variables.

The Hungarian method

The first polynomial-time primal-dual algorithm for the LSAP is the Hungarian method due
to Kuhn [118]. In the Hungarian method a starting dual solution is obtained by so-called
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row and column reductions:

ui = min{cij : 1 ≤ j ≤ n} , for 1 ≤ i ≤ n,

and then
vj = min{cij − ui: 1 ≤ i ≤ n} for 1 ≤ j ≤ n .

An infeasible primal start solution is obtained by finding a matching M of maximal car-
dinality in the graph Ḡ = (V,W ; Ē), where V = W = {1, 2, . . . , n}, and Ē = {(i, j): c̄ij =
cij − ui − vj = 0}. Then we set xij = 1 if (i, j) is an edge of the matching M, and xij = 0,
otherwise. Clearly, the primal solution xij , 1 ≤ i, j ≤ n, and the dual solution ui, vj,
1 ≤ i, j ≤ n, fulfill the complementarity slackness conditions.
According to Theorem 1.5, the matching M corresponds to a minimal vertex cover of graph
Ḡ, or equivalently to a minimal zero-cover of the matrix. Let I be the set of row indices of
uncovered rows and let J contain the indices of uncovered columns. Then the dual variables
are updated by setting

ui :=

{

ui − δ if i ∈ I

ui otherwise
vj :=

{

vj if j ∈ J

vj + δ otherwise
,

where δ is defined as minimum of the currently uncovered reduced costs, i.e., δ = min{c̄ij : i ∈
I, j ∈ J}. This corresponds to an admissible transformation T given by

c̃ij :=















cij − δ if i ∈ I, j ∈ J

cij + δ if i 6∈ I, j 6∈ J

cij otherwise

. (13)

Its constant z(T ) is equal to δ(|I|+|J |−n). This transformation preserves the nonnegativity
of the reduced cost matrix (or equivalently, the feasibility of the dual solution). According
to Theorem 1.6, the constant z(T ) equals zero (|I| + |J | = n), if and only if there is a
permutation φ such that ciφ(i) = 0, for 1 ≤ i ≤ n. In the latter case we have a feasible
primal solution, and hence also an optimal one.

One possibility to implement the Hungarian method so that it achieves a worst case time
complexity of O(n3) is by means of so-called alternating trees. Such a tree contains matched
edges - which are edges from M, and free edges which do not belong to M. Analogously,
free nodes are nodes which are adjacent only to free edges, and matched nodes are adjacent
to one matched edge.

Definition 3.1 An alternating tree is a directed tree rooted at some free node r ∈ V , where
all arcs are directed away from the root and

• all matched edges are directed from W to V and all free edges are directed from V to
W ,

• the root r is the only free node,

• all leafs are nodes from V .

Starting from a maximal matching in graph Ḡ the algorithm builds an alternating tree in
Ḡ. As soon as this tree reaches a leaf v ∈ V which is adjacent to some free node in W ,
there is an alternating path between the free nodes v and w, i.e., there is a path joining v
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and w in G whose edges are alternatively free and matched edges. Such a path is called
an augmenting path, because by exchanging the free and matched edges in it we get a new
maximal matching in Ḡ, whose cardinality is larger than that of the previous maximal
matching. In this case we can increase the number of primal variables xij which are equal
to 1, and thus improve the primal solution without changing the dual one. There may be at
most n such augmentations because the cardinality of a matching cannot exceed n. After
having performed all possible augmentation steps we get finally a maximal alternating tree,
i.e., an alternating tree where all leafs have cardinality equal to 1 in Ḡ. At this point, the
dual variables - and with them the reduced costs and the graph Ḡ - are updated by an
admissible transformation. Thus some new edges are added to Ḡ, i.e., additional reduced
costs equal to 0 arise. Now the existing alternating tree can be updated with respect
to the new graph Ḡ. It is possible to implement the update of dual variables so that
all due updates between two consecutive augmentations are performed by applying O(n2)
elementary operations. Since there may be at most n augmentations, this leads to an O(n3)
algorithm.

Shortest augmenting path algorithms

Although the Hungarian algorithm described above grows an alternating tree to augment
the primal solution, in principle only alternating augmenting paths are used. This observa-
tion is the conceptual basis of numerous shortest augmenting path algorithms for the LSAP,
which belong to the class of primal-dual methods and can also be implemented in O(n3)
steps. Given a pair of a primal solution xij, 1 ≤ i, j ≤ n, and a dual feasible solution
ui, vj , 1 ≤ i, j ≤ n, which fulfill the complementarity slackness conditions, together with
the reduced costs c̄ij , construct a weighted directed bipartite graph G̃ = (V,W ; Ẽ) with
arc set Ẽ = D ∪ R. Here D = {(i, j): (i, j) ∈ E, xij = 0} is the set of forward arcs, and
R = {(j, i): (i, j) ∈ Ē, xij = 1} is the set of backward arcs. The weights of the backward
arcs are set equal to 0, whereas the weights of the forward arcs are set equal to the corre-
sponding reduced costs. We select a free node r in V and solve the single-source shortest
path problem, i.e., compute the shortest paths from r to all nodes of G̃. The shortest among
all paths from r to some free node in W is used to augment the current primal solution by
swapping the free and matched edges. The primal and dual solutions as well as the reduced
costs are updated similarly as in the case of the Hungarian method. It can be shown that
each (unfeasible) primal solution (or equivalently, each matching in Ḡ) constructed in the
course of the algorithm has minimum weight among all solutions of the same cardinality, see
e.g. Lawler [119], Derigs [68]. Hence, after n augmentations we obtain an optimal primal
solution. The single-source shortest paths can be computed in O(n2) time in a graph with
nonnegative weights, e.g. by applying the Dijkstra algorithm implemented with Fibonacci
heaps, see Fredman and Tarjan [80]. This implies that the overall complexity of augmenting
path algorithms amounts to O(n3).

The shortest path computation may stop as soon as the first path joining r with some free
node in W has been computed.

Basically shortest augmenting path algorithms for the LSAP may differ in the way they
determine a starting pair of primal and dual solutions, and by the subroutine they use
for computing the shortest paths. (The reader is referred to Cherkassky, Goldberg, and
Radzik [59] for a review on shortest paths algorithms. For developments on data structures
used in shortest path algorithms the reader is referred to Fredman and Tarjan [80], and to
Ahuja, Mehlhorn, Orlin, and Tarjan [3].) Most of the existing algorithms use the Dijkstra
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algorithm for the shortest path computations, e.g. Carpaneto and Toth [56], Jonker and
Volgenant [107, 108], and Volgenant [164].
Several authors try to speed up the shortest path computations by thinning out the un-
derlying bipartite graph, e.g. Carraresi and Sodini [52], Glover, Glover, and Klingman [90].
In these algorithms only “short” edges of the graph G̃ are considered in the shortest path
computations. A threshold value which is updated after each augmentation is used to deter-
mine the short edges. Therefore these algorithms are sometimes called threshold algorithms.
Their worst case complexity is also O(n3).
Some shortest augmenting path algorithms apply specific implementations of shortest paths
computations especially suited for sparse matrices, see [56], and [164]. To apply this tech-
nique the cost matrix is thinned-out by some heuristic. If no feasible primal solution is
found for the sparse problem, then the cost matrix is enlarged by re-adding some of the
“canceled” entries.

The auction algorithm

Another primal-dual algorithm, called the auction algorithm, has been proposed by Bert-
sekas [28]. The auction algorithm is similar to the Hungarian method to the extent that the
updates of primal and dual solutions can be modeled by admissible transformations. How-
ever, whereas in the Hungarian method the value of the dual objective function increases
after each such an update, in auction algorithms it is only guaranteed that this value does
not decrease. Another difference is that in the Hungarian algorithm a matched vertex of
V or W remains matched for the rest of the algorithm, while this property only holds for
vertices of V in the case of the auction algorithm. Some vertex of W matched in a certain
iteration of the auction algorithm may become free in some further iteration. The original
auction algorithm was developed for maximization problems, where we try to maximize
the objective function of the LSAP under the assignment constraints. In the minimization
case the auction algorithm associates each vertex of W with an item to be sold, and each
vertex of V with a customer. cij is the cost of item j for customer i, the dual variable vj
is the profit on item j, and the difference cij − vj is customer’s i cost margin relative to
the profit on item j. The algorithm starts with a pair of an (unfeasible) primal solution xij
(e.g. xij = 0 for all i, j) and a feasible dual solution ui, vj . This pair of solutions fulfills the
complementarity slackness conditions (12), and is updated iteratively by maintaining (12).
The update of the current xij , ui, vj , to obtain the subsequent pair of solutions x′ij , u

′
i, v

′
j,

is made by choosing a free customer ī (̄i ∈ V ), and by determining the smallest and second
smallest cost margin ū and ũ, respectively:

ū = min{c̄ij − vj: 1 ≤ j ≤ n} , j̄ = argmin{c̄ij − vj : 1 ≤ j ≤ n} ,

ũ = min{c̄ij − vj : 1 ≤ j ≤ n, j 6= j̄} .
Then the algorithm distinguishes two cases: Case 1, where ū < ũ, or ū = ũ and j̄ is free,
and Case 2, where ū = ũ and j̄ is matched. In the first case the algorithm assigns ī to j̄
(x′
īj̄

= 1) and updates the dual variables uī and vj̄ so as to preserve dual feasibility: u′
ī
= ũ

and v′
j̄

= vj̄ + (ū− ũ). If j̄ was not a free vertex, i.e., there was some î such that xîj̄ = 1,

the new primal solution sets x′
îj̄

= 0. In the second case, where ū = ũ and there is an index

î such that xîj̄ = 1, the algorithm sets uī := ū and performs a labeling procedure to either

update the dual variables so as to assign j̄ to ī or to get an augmenting path starting from ī
and ending at some free vertex in W . In the latter case we would have an update of the pair

15



of primal and dual solutions as in the case of the Hungarian method (see [28] for a complete
description). This auction algorithm is pseudopolynomial and runs in O(n2(n + R)) time,
where R = max{|cij |: 1 ≤ i, j ≤ n}. The similarity with the Hungarian method allows
the combination of both algorithms as proposed in [28]. The combined algorithm starts by
applying the auction algorithm, counts the iterations which do not lead to an increase of
the number of items assigned to customers, and switches to the Hungarian method as soon
as the counter exceeds an appropriately defined parameter. It can be shown that the worst
case complexity of this combination is O(n3).

Bertsekas and Eckstein [35] modified the above described auction algorithm to obtain a
polynomial-time algorithm with worst case complexity O(n3 log(nR)), where R is defined
as above. The algorithm works with a pair of a primal and a dual solution which fulfills
the ǫ-complementarity conditions

xij(cij − ui − vj) ≥ −ǫ , for 1 ≤ i, j ≤ n.

In terms of the ǫ-complementarity conditions an ǫ-relaxed problem is defined: It consists
of finding a pair of feasible primal and dual solutions of the given LSAP which fulfills the
ǫ-complementarity conditions. It can be shown that an optimal solution of the 1/n-relaxed
problem (ǫ = 1

n) is also an optimal solution of the initial problem. This fact suggests to
apply so-called scaling techniques, i.e., to solve initially the ǫ-relaxed problem for a large ǫ,
and then to decrease ǫ gradually until it reaches 1/n.

When ǫ is decreased to ǫ′ the optimal solution of the previous ǫ-relaxed problem is updated
with “few” efforts to obtain the optimal solution of the ǫ′-relaxed problem. Bertsekas et al.
[35] implement this ǫ-scaling in terms of a scaling of the costs. All costs cij are multiplied
by n + 1 and a 1-relaxed problem (ǫ = 1) is solved. If xij and ui, vj are optimal primal
and dual solutions of the 1-relaxed problem with costs c′ij = (n + 1)cij , then xij and ui

n+1 ,
vj

n+1 , is an optimal pair of primal and dual solutions for the 1
n -relaxed problem with costs

cij . Consequently, xij is an optimal solution of the LSAP with costs cij . The 1-relaxed
subproblem with costs c′ij is solved by solving M = O(log(nR)) subproblems consecutively.

The m-th subproblem is a 1-relaxed LSAP with costs given by
c′ij

2M−m , and is solved by an
algorithm similar to the original auction algorithm [28]. For a free node ī ∈ V , the values
ū, ũ, and the index j̄ ∈ W are determined as in the original auction algorithm, and two
analogous cases are distinguished. The dual variable corresponding to ī is set to uī := ũ+ ǫ

2 ,
and the dual variable corresponding to j̄ is set to vj̄ := vj̄ + (ū− ũ) − ǫ

2 .

Bertsekas et al. [35] call bidding the update of uī. The version where one node bids at a time
is called Gauss–Seidel version of the auction algorithm and is better suited for sequential
implementations (see [35] for more information). Another version, where all free customers
bid simultaneously is called Jacobi version of the auction algorithm and is more appropriate
for parallel implementations, see Bertsekas [29].

Pseudoflow algorithms

Other primal-dual algorithms for the LSAP are based on the formulation of the LSAP
as a minimum cost flow problem (see Section 1). A pseudoflow is a flow which fulfills the
capacity constraints (3), but does not necessarily fulfill the flow conservation constraints (2).
Pseudoflow algorithms work with ǫ-relaxations of the minimum cost flow problem where
the flow conservation constraints are violated by at most ǫ. They iteratively transform
the starting solution, which is a pseudoflow, into an optimal solution for the ǫ-relaxed
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problem. Then, ǫ is decreased and the procedure is repeated until ǫ reaches 1
n . At that

point an optimal solution of the ǫ-relaxed flow problem is also an optimal solution for
the original flow problem, and hence for the LSAP. The general idea is quite similar to the
auction algorithm of Bertsekas et al. [35] which involves ǫ-complementarity conditions. One
difference is that pseudoflow algorithms apply ǫ scaling, whereas the auction algorithm in
[35] applies cost scaling. Another difference concerns the transformation of a pseudoflow
into an optimal solution of the ǫ-relaxed flow problem, which is done by the push-relabel
method described by different authors, e.g. Goldberg and Tarjan [96], Cherkassky and
Goldberg [58]. If ǫ is divided by δ ≥ 2 in each iteration, it can be shown that the push
relabel algorithm terminates after O(logδ(nR)) iterations, where R is defined as in the
previous section. Different pseudoflow algorithms for the LSAP have been developed by
Orlin and Ahuja [133], Goldberg, Plotkin and Vaidya [95], and Goldberg and Kennedy [94].
These algorithms are particularly efficient for sparse problems: the worst-case complexity of
the first two algorithms is O(

√
nm log(nR)), where m is the number of finite entries of the

cost matrix C. (Infinite entries correspond to non-existing edges in the matching model.)

3.2 Simplex-Based Algorithms

Simplex-based algorithms for the LSAP are specific implementations of the network simplex
algorithm. The latter is a specialization of the simplex method for linear programming to
network problems and is due to Dantzig, see e.g. [65]. The specialization relies on exploiting
the combinatorial structure of network problems to perform more efficient pivots acting on
trees rather than on the coefficient matrix. A number of such algorithms for the LSAP,
and more generally for the transportation problem of whom the LSAP is a special case,
have been developed in the early 1970s, see e.g. Glover, Karney and Klingman [91], Glover
and Klingman [92]. It is well known that there is a one-to-one correspondence between
primal (integer) basic solutions of the LSAP and spanning trees of the bipartite graph G
related to assignment problems as described in Section 1. Moreover, given the spanning
tree, the values of the corresponding dual variables fulfilling the complementarity slackness
conditions are uniquely determined, as soon as the value of one of those variables is fixed
(arbitrarily). Every primal feasible basic solution is highly degenerate because it contains
2n − 1 variables and n − 1 of them are equal to 0. Hence degeneracy poses a problem,
and the first simplex-based algorithms for the LSAP were exponential. The first steps
towards the design of polynomial-time simplex-based algorithms were made by introducing
the concept of so-called strongly feasible trees, due to Cunningham [62, 63] and Barr, Glover,
and Klingman [26].

Primal simplex-based algorithms

Primal simplex-based algorithms work with a primal feasible basic solution which corre-
sponds to a spanning tree T in G. n of the x variables corresponding to edges of the tree
are equal to 1, the other n− 1 edges of the tree correspond to x variables equal to 0. Given
the primal variables xij , the dual variables ui, vj are uniquely determined by setting one of
them arbitrarily and computing the others such that the complementarity conditions are
fulfilled, i.e., c̄ij = cij − ui − vj = 0 for all i, j such that (i, j) ∈ T . If the reduced costs
corresponding to the edges of the co-tree T c = E \ T are nonnegative, the current basis T
is optimal. Otherwise, there is an edge (i, j) = e ∈ TC with c̄ij < 0. Adding this edge to T
creates a unique cycle C(T, e). The subsequent basis T ′ is given by T ′ := (T \ {f}) ∪ {e},
where f = (i′, j′) is some edge in C(T, e), with xi′j′ = min{xij : (i, j) ∈ C(T, e)}.
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Barr et al. [26] and Cunningham [62, 63] introduced a special type of spanning trees in G,
called strongly feasible trees. They showed that the network simplex method for the LSAP
can be implemented so as to visit only bases which correspond to strongly feasible trees.
Strongly feasible trees are defined similarly as alternating trees in the Hungarian method.

Definition 3.2 A strongly feasible tree is a rooted directed tree in G with root in V and
arcs directed away from the root, such that for all arcs (i, j) with i ∈ V and j ∈W , xij = 1,
and for all arcs (i, j) with i ∈W and j ∈ V , xij = 0.

Strongly feasible trees have a number of useful properties with respect to the primal network
simplex algorithm. Before we describe them, let us say that (i, j) = f ∈ TC is a forward
(backward) arc if i ∈ V (j ∈W ) lies on the directed path joining the root r of T with j ∈W
(i ∈ V ). An arc f which is neither backward nor forward is called a cross arc.

Proposition 3.3 (Barr et al. [26], 1977, Cunningham [62, 63], 1976, 1979) Let T be a
strongly feasible tree for an LSAP instance, and let TC be its corresponding co-tree. Then

1. The root has degree 1, every other node from V has degree 2.

2. If the edges e = (i, j) and f = (i′, j′), i, i′ ∈ V , j, j′ ∈ W , satisfy the properties
e ∈ TC, f ∈ c(T, e), and i ≡ i′ then (T \ {f}) ∪ {e} is again a strongly feasible tree.

3. For an e ∈ TC the pivot by the pair (e, f) defined as above is non-degenerate iff e is
a forward arc.

Cunningham showed that the primal network simplex algorithm for the LSAP cannot per-
form more than O(n2) degenerate pivots at some vertex of the assignment polytope, if
strongly feasible trees and a specific pivot rule are employed. By combining these ideas
with Dantzig’s pivot rule (the new basic variable is that with the most negative reduced
cost), Hung [104] obtained an algorithm which performs at most O(n3log∆) pivots, where
∆ is the difference between the objective function value of the starting solution with the
optimal one. Orlin [132] reduced the number of pivots to O(n3 log n) for the primal net-
work simplex algorithm with Dantzig’s rule. He exploits the fact that employing strongly
feasible trees is equivalent to running the standard network simplex algorithm with some
lexicographic pivoting rule for an appropriately perturbed problem. (This fact was also
observed by Cunningham [62].) By scaling the coefficients of the perturbed problem, an
upper bound of O(n2 log ∆) on the number of pivots is obtained. In the case of LSAPs can
be shown that there exists an equivalent problem with cost coefficients bounded by 4n(n!)2,
and hence ∆ = O(n log n).

Another primal simplex algorithm which uses a pivot rule similar to Dantzig’s was proposed
by Ahuja and Orlin [4]. Assuming that the cost coefficients are integral, the algorithm
performs at most O(n2 logR) pivots and has a worst case complexity of O(n3 logR), where
R is defined as R = max{|cij |: 1 ≤ i, j ≤ n}. The pivot rule involves scaling, and a pivot
edge is chosen among those edges (i, j) for which c̄ij ≤ −0.5ǫ. If at any stage in the
algorithm there does not exist a pair (i, j) which fulfills c̄ij ≤ −0.5ǫ, then ǫ is divided by 2.
This process is continued until ǫ becomes less than 1. At this point an optimal solution is
reached.

Based on strongly feasible trees Roohy-Laleh [154] gave a strongly polynomial primal
network-simplex algorithm which performs at most O(n3) pivots and has a worst-case com-
plexity of O(n5).
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Akgül [7] designed a primal simplex algorithm which performs O(n2) pivots and has an
overall worst case complexity of O(n3). Also this algorithm uses strongly feasible trees as
basic solutions and Dantzig’s pivot rule to choose the variable which enters the basis. A
special feature of the algorithm is that it solves an increasing sequence of LSAPs which
are subproblems of the original one, in the sense that the edge sets of the corresponding
graphs are subsets of the edge set E for the original problem. The edge set associated with
a certain subproblem is obtained by adding some edges incident to a single node to the
edge set associated with the previous subproblem. The last subproblem in the sequence
is the original LSAP. The author investigates the structure and properties of so-called cut
sets which are sets of vertices whose dual variables are changed during the solution of a
subproblem. It can be shown that the cut sets are disjoint, and that edges whose heads lie
in the cut set are dual feasible for all subgraphs considered afterwards. By exploiting these
properties it is shown that the optimal solution of the (i+1)-st subproblem can be found by
performing at most k + 2 pivots starting from an optimal solution of the i-th subproblem.

Dual simplex-based algorithms

A spanning tree T of the graph G, besides determining uniquely an integer valued basic
solution for the LSAP, determines also a basic solution of the dual (7) of the LSAP. This
is done by setting the value of one of the variables arbitrarily, say u1 = 0, and the other
variables so as to fulfill ui + vj = cij for all i, j such that (i, j) ∈ T . This dual solution is
unique up to the arbitrary setting of one of the variables. Moreover, this basic dual solution
is feasible iff c̄ij = cij − ui − vj ≥ 0. Clearly, if both primal and dual solutions determined
by T are feasible, then both of them are optimal.

Dual simplex methods for the LSAP work with a tree T which defines a dual feasible basic
solution and keep transforming T iteratively until the corresponding primal solution is
feasible, and hence, optimal. The transformation is done by pivoting on an edge e = (k, l)
of E \ T for which the corresponding primal constraint is violated, i.e., xkl ≤ −1. This
edge is added to the current tree T and one of the edges, say f , contained in the cycle
C(T, e) is removed from T to form a new tree T ′ = (T \ {f}) ∪ {e}. In order to keep dual
feasibility the chosen edge f = (i, j) should fulfill i ∈ T (k), j ∈ T (l), where T (k), T (l) are the
subtrees of T which arise when the edge e = (k, l) is removed from T , and contain k and l,
respectively.

Different rules for the choice of the edges e and f yield different dual simplex algorithms.
Many of these algorithms make use of so-called signatures, introduced by Balinski [18].
Therefore, such algorithms are also called signature methods.

Definition 3.4 Consider an LSAP and a spanning tree T in the graph G = (V,W ;E)
related to the LSAP. The row (column) signature of T is the vector of the degrees in T of
the vertices in V (W ) for some arbitrary but fixed order of those vertices.

It can be shown that a spanning tree T which defines a dual feasible basis and whose
row signature contains only one 1 and the other entries equal to 2 is an optimal basis.
Consequently, the primal solution defined as follows is optimal. Start with xkl=1 for k ∈ V
being the node of degree 1 and (k, l) ∈ T . Set the other variables xij such that the
assignment constraints are fulfilled and xij = 0 for (i, j) 6∈ T . Thus the LSAP is reduced
to finding a dual feasible tree with row (column) signature (1, 2, 2, . . . , 2). Balinski [18, 19]
proposes two algorithms to find such a tree T . Both algorithms start with a tree with
row signature (n, 1, . . . , 1) and dual variables u1 = 0, vj = c1j for 1 ≤ j ≤ n, and ui =
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minj{cij − vj}, for 2 ≤ i ≤ n. Such a tree is often called a Balinski tree. In the first
algorithm [18] the choice of the pivoting edges e and f is guided only by the signatures,
trying to decrease the number of 1-s in the signature. This makes the algorithm a non-
genuine simplex method because it may pivot on some edge e = (k, l) with xkl = 0.
Moreover, the algorithm does not stop when an optimal solution with signature different
from (1, 2, . . . , 2) is found. The algorithm performs at most O(n2) operations to decrease
the number of 1-s in the signature by 1. Hence its worst case complexity is O(n3).

Goldfarb [97] proposed a similar algorithm based on signatures which solves a sequence
of subproblems of the given LSAP. As in the algorithm of Akgül [7] the subproblems are
LSAPs with cost matrices being submatrices of C = (cij). The cost matrix of the k-th
subproblem is defined by the first k rows and the first k columns of C. Balinski’s algorithm
is used to solve the k-th subproblem, i.e., to produce a tree corresponding to a dual feasible
basis with signature (2, . . . , 2, 1). After the transition to the (k + 1)-st subproblem, i.e.,
after the introduction of the (k + 1)-st row and column of matrix C, the signature either
remains optimal or has the form (3, 2, . . . , 2, 1, 1). In the latter case at most k − 1 pivots
are needed to produce a tree with signature (2, . . . , 2, 1) for the (k+1)-st problem. Clearly,
this algorithm is not a genuine simplex dual algorithm for the same reasons as Balinski’s
algorithm.

The second algorithm of Balinski [19] employs another pivot rule which is a combination of
the rule based on signatures used in [18] and the classical pivot on an edge e = (i, j) with
the most negative xij. This rule allows the algorithm to visit only so-called strongly dual
feasible trees. These trees are defined in terms of so-called odd and even arcs. Consider a
tree T corresponding to a dual feasible solution and root it at the first vertex in V (according
to some fixed arbitrary order) and direct all edges away from the root. An arc (i, j) ∈ T
with i ∈ V , j ∈ W , is called odd arc and an arc (j, i) with j ∈ W and i ∈ V is called even
arc. A dual feasible tree is strongly dual feasible if xij ≥ 1 for all even arcs (i, j) ∈ T , and
xij ≤ 0 for all odd arcs (i, j) ∈ T which do not join 1 = i ∈ V with a node j of degree 1
in W . The algorithm proposed in [19] pivots only on edges (i, j) for which xij < 0. Hence,
this algorithm is a genuine dual simplex method, sometimes also called competitive simplex
algorithm. The number of pivots is at most (n − 1)(n − 2)/2, thus yielding a worst case
time complexity of O(n3).

Kleinschmidt, Lee, and Schannath [114] have shown that this algorithm of Balinski [19] is
equivalent to an algorithm proposed earlier by Hung and Rom [105].

Akgül [5] proposed an algorithm similar to Goldfarb’s. The two main differences are:
1) Akgül’s algorithm works with strongly dual feasible trees, i.e., it finds a strongly dual
feasible tree for the k-th problem and transforms it into a strongly dual feasible tree for
the (k + 1)-st problem, and 2) the subproblems considered by Akgül are transportation
problems. The algorithm performs at most O(n2) pivots and has a worst case complexity
of O(n4).

A similar algorithm was developed by Paparrizos [136]. The main difference to Akgül’s
algorithm is that here the subproblems are determined with the help of a Balinski tree.
They are, however, solved in the same way as in [5].

Two other signature-guided algorithms were given by Paparrizos [135] and Akgül and
Ekin [8]. Paparrizos’ algorithm is similar to Balinski’s competitive simplex algorithm [19].
The main difference concerns the dual feasibility which is not an invariant of Paparrizos’
algorithm. The algorithm starts with a Balinski tree. Then it performs pivots which
may produce infeasible dual solutions. The pivots are grouped in stages and each stage
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starts (and stops) with a strongly dual feasible tree. The last tree of the last stage is
also primal feasible and hence optimal. The algorithm visits only so-called strong trees
which are obtained from strongly feasible trees by dropping the feasibility requirement.
The algorithm performs O(n2) pivots but spends as much time to determine the pair of
edges involved in a pivot. Thus the overall complexity is O(n4). Akgül and Ekin [8] give
an efficient implementation of Paparrizos’ algorithm, which maintains and updates a forest
rather than a single tree. In this way only dual feasible trees are visited. The number of
pivots is again O(n2) but the overall complexity becomes O(n3).

Later, Paparrizos [137] designed a purely infeasible simplex algorithm which performs O(n2)
pivots and has worst case complexity of O(n3). This algorithm is similar to the algorithm
presented in [135] since it starts again with a Balinski tree and visits only strong trees.
Also the edge inserted to a the current strong tree during a pivot operation is determined
as in [135]. The edge which is removed from the tree is determined, however, by a different
rule. In contrast with the previous algorithm proposed in [135], this algorithm is purely
infeasible in the sense that it restores dual feasibility only when it stops with an optimal
solution.

3.3 Other Algorithms

A primal algorithm of Balinski and Gomory [20]

The algorithm of Balinski and Gomory is probably the oldest primal algorithm for the
LSAP. It works with a perfect matching M in the graph G (i.e., a primal feasible solution
xij, 1 ≤ i, j ≤ n) and dual variables ui, vj , 1 ≤ i, j ≤ n, which fulfill the complementary
slackness conditions. The primal and dual solutions are updated iteratively by maintaining
thereby the complementarity slackness conditions. Let Ẽ = {(i, j): c̄ij = cij − ui − vj ≥ 0}.
If Ẽ = E than the primal solution M and the dual solution ui, vj , 1 ≤ i, j ≤ n, are optimal.
If there is an edge e = (i, j) 6∈ Ẽ, then there exists an edge (r, j) ∈ M. The algorithm builds
an alternating tree T in the subgraph (V,W ; Ẽ) of G and grows it by updating the dual
variables similarly as in the primal-dual methods. Then, the matching is changed if there
is a cycle in T ∪ {e}. This procedure is repeated until E = Ẽ. A characteristic feature of
the algorithm is that Ẽ grows monotonically in the course of the algorithm, i.e., if an edge
becomes dual feasible at a certain iteration it remains feasible in the subsequent iterations
until the algorithm stops. An efficient version of this algorithm with time complexity O(n3)
has been described by Cunningham and Marsh [64].

Cost Operator Algorithms

Two other primal algorithms for the transportation problem, and hence also for the LSAP,
are the cost operator algorithms developed by Srinivasan and Thompson [158]. In contrast
to the algorithm of Balinski and Gomory these algorithms work with primal basic solutions.
Both algorithms start with a dual feasible solution ui, vj , 1 ≤ i, j ≤ n, found by the usual
row/column reductions: compute the column minima, subtract them from the columns,
then compute the row minima and subtract them from the rows. Then both algorithms
construct a primal feasible basic solution xij (xij are reals between 0 and 1), and introduce
new costs: c̃ij = ui + vj for all i, j such that xij is in the basic solution, and c̃ij = cij ,
otherwise. Thus, xij and ui, vj form a pair of feasible primal and dual solutions for the
LSAP with cost matrix (c̃ij). This pair of solutions fulfills the complementarity slackness
conditions. Hence both solutions are optimal. Next both algorithms change step by step
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the costs c̃ij back to cij. In each step, the primal and dual solutions are updated so as
to remain optimal for the problem considered at that step. One algorithm employs the
cell cost operator and changes cij for one pair (i, j) at a step, whereas the other algorithm
employs the area cost operator and changes the costs cij for a set of pairs (i, j) at a step.
Both algorithms maintain strongly feasible trees for all intermediate problems, as pointed
out by Akgül [6]. The cell operator algorithm performs one dual pivot (changing the dual
variables) and one primal pivot (changing the basic solution) at each step. Nevertheless this
is not a purely pivotal algorithm because the primal and the dual solution do not always
fulfill the complementary slackness conditions. Each step performs O(n) pivots. The total
number of pivots is O(n2).
The area cost operator uses similar dual and primal pivots and tries to restore as many cij
as possible, at a step. This algorithm performs also O(n2) pivots. Akgül [6] conjectures
that both algorithms can be implemented so as to achieve a time complexity of O(n3).

A recursive algorithm

Thompson [160] proposed an O(n3) algorithm which solves a sequence of transportation
problems the last of which is the given LSAP. Given an LSAP of size n with cost matrix
C = (cij), the algorithm introduces an (n+1)-st dummy vertex in V (dummy row in C) and
an (n + 1)-st dummy vertex in W (dummy columns in C). All edges adjacent to dummy
nodes have costs equal to 0, cn+1,j = ci,n+1 = 0, 1 ≤ i, j ≤ n + 1. Obviously, the problem
of minimizing

∑n+1
i,j=1 cijxij subject to

∑

j xij = 1, if i ≤ n, and
∑

j xij = 0, if i = n + 1,
∑

i xij = 1, if j ≤ n, and
∑

i xij = 0, if j = n+ 1, is equivalent to the original LSAP.
The first subproblem solved is the trivial transportation problem defined by the last row
of the extended matrix C with supply equal to n at vertex i = n + 1 in V , demand equal
to 1 for all vertices j ≤ n in W , and demand equal to 0 for j = n + 1. The k-th problem
is a transportation problem defined by the k − 1 first rows and the (n + 1)-st row of the
extended matrix C, where the supply of the first k − 1 vertices in V is equal to 1 and that
of the (n + 1)-st vertex is equal to n − k. The demands of vertices in W are as for the
first subproblem, and they remain the same for all subproblems. The relaxation algorithm
proceeds as follows: it produces a primal optimal solution for the current problem and
uses it to find an optimal dual solution for the current problem. This is used to produce
a primal optimal solution of the next problem in sequence, and so on. A specific feature
of the algorithm is that the dual variables change monotonically: the u variables do not
increase, whereas the v variables do not decrease. Another feature is that every primal or
dual feasible solution found for some subproblem is also optimal. The algorithm can be
implemented to achieve an O(n3) worst case complexity. For more information we refer to
[160].

Forest algorithms

We saw above that primal (dual) simplex-based algorithms for the LSAP work with primal
(dual) feasible bases which correspond to spanning trees in bipartite graphs.
Forest algorithms work with forests in G instead of trees. Feasible (primal or dual) forests
are defined analogously as feasible (primal or dual) trees. A forest is primal feasible, if there
exists a primal feasible solution with xij = 0 for all i, j such that (i, j) is not an edge of
the forest. Analogously, a forest is dual feasible, if there exists a dual feasible solution ui,
vj, such that c̄ij = cij − ui − vj = 0, whenever (i, j) is an edge of the forest. Unlike trees,
forests do not determine (primal or dual) bases of the problem.
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A primal-dual forest algorithm, or more precisely a forest implementation of the Hungarian
method, has been described by Akgül in [6]. The algorithm iteratively solves a shortest
path problem in the graph G associated with the assignment problem, and equipped with
the reduced costs c̄ij as edge lengths. This is done by growing a forest of alternating trees
rooted at a free node in V each and by exploiting the relationship between alternating
trees and strongly feasible trees. As soon as the leafs of an alternating tree are joined by
edges with free nodes in W , a strongly feasible tree arises. The algorithm maintains a set
of alternating trees called planted forest , and a set of strongly feasible trees called matched
forest. Each augmentation transforms an alternating tree in a strongly feasible tree, until
the planted forest becomes empty. The augmentations employ labeling and update of dual
variables like all primal-dual algorithms in general, and the Hungarian method in particular.

An O(n3) forest algorithm is proposed by Achatz, Kleinschmidt, and Paparrizos [1] and is
a more efficient variant of the algorithm proposed by Paparrizos in [137]. The algorithm
starts with some basic dual feasible tree rooted at some arbitrary node in V , and constructs
a forest by deleting all edges (i, j) where i ∈ V , j ∈W , and i is the father of j with respect
to the usual orientation of the tree which directs all edges away from the root. This yields
a spanning forest which is dual feasible. All nodes in W are considered as roots of the
connected components to which they belong. Further, the algorithm works with superforests
which are forests where every connected component contains one root, and nodes from W ,
which are not roots, have degree equal to 2. The starting forest constructed as above is
a superforest . Each superforest is divided into a surplus forest and a deficit forest. The
surplus forest contains all connected components whose roots have degree larger than 1.
The deficit forest is the complement of the surplus forest with respect to the considered
superforest. The algorithm constructs a sequence of dual feasible superforests by applying
a special pivoting strategy. It stops when a superforest with an empty surplus forest is
found. It can be shown that this yields a dual optimal solution of the considered LSAP.

3.4 On Parallel Algorithms

Since the late 1980s a number of parallel algorithms for the LSAP has been proposed. They
are parallelized versions of primal-dual algorithms based on shortest path computations, due
to Kennington and Wang [113], Zaki [170], Balas, Miller, Pekny, and Toth [14], Bertsekas
and Castañon [32, 33], parallelized versions of the auction algorithm, due to Zaki [170],
Wein and Zenios [167, 168], Bertsekas and Castañon [31], and parallelizations of primal
simplex-based methods, due to Miller, Pekny, and Thompson [128], Peters [138], Barr and
Hickman [27]. For a good review on parallel algorithms for the LSAP and network flow
problems in general the reader is referred to Bertsekas, Castañon, Eckstein, and Zenios [34].

Parallel implementations of primal-dual shortest path algorithms

The primal-dual parallel algorithms based on shortest path computations can be classified
into single node algorithms and multi-node algorithms. Single node algorithms compute a
shortest path tree from a single free source node in parallel, i.e., by parallelly scanning the
arcs connected to a single node. Most of these algorithms are obtained as implementations of
the algorithm of Jonker and Volgenant [107]. As shown in [113, 170], considerable speedups
can be obtained in the case of dense assignment problems. Kennington et al. [113] obtain
a speedup of 3–4 for a number of processors between 3 and 8. For sparse problems the

23



speedups decrease, since the amount of work which can be performed in parallel decreases.
Thus, the effectiveness of these algorithms is limited by the density of the input network.
Computational results, e.g. Castañon, Smith, and Wilson [53], show that single instruction
stream multiple data stream (SIMD) shared memory massively parallel architectures are
well suited for implementing single node parallel algorithms to solve dense problems.

Multi-node approaches compute multiple augmenting paths starting from different free
nodes, and perform multiple augmentations and updates of variables in parallel. Balas et
al. [14] propose a synchronous algorithm of this type which employs a coordination protocol
to combine all augmentations and changes of the dual variables so as to maintain feasibility
and keep the complementarity slackness conditions fulfilled. Bertsekas et al. [32] extend
this protocol to obtain asynchronous algorithms. The coordination in the asynchronous
algorithm is realized by maintaining a master copy of a pair of primal and dual solutions
which can be accessed by all processors. The latter compute augmenting paths and variable
updates based on the copy of the primal and dual solution they have, and then check
whether the update is feasible (the master copy may have been updated in the meanwhile).
If the update is feasible, the master copy is updated. The master copy is locked during
the updates. Computational experience with these algorithms shows that their principal
limitation is the decreasing amount of parallel work with the number of iterations. Initially
many augmenting paths can be found so that many processors can be used effectively. Then
the load decreases as the number of iterations increases. When comparing synchronous
and asynchronous implementations Bertsekas et al. [32] show that for sparse problems
asynchronous algorithms may be outperformed by synchronous algorithms. This is basically
due to the considerable coordination overhead of the asynchronous algorithms.

Parallel implementations of the auction algorithm

Recall that the auction algorithm computes in each iteration the smallest and the second
smallest cost margin with respect to the profit for each free customer. Different implemen-
tations may compute these differences (also called bids in the maximization version of the
LSAP) for all free customers - resulting in the so-called Jacobi methods, for a single free
customer - resulting in so-called Gauss-Seidel methods, or for a subset of free customers
- resulting in so-called block Gauss–Seidel methods. Here again, we have single node and
multi-node algorithms. The multi-node algorithms compute the bids for different customers
in parallel, and this is appropriate for Gauss-Seidel and block Gauss-Seidel methods. Single
node algorithms compute only one bid at a time but perform this computation in parallel.
There are also hybrid approaches where multiple bids are computed in parallel and the com-
putation of each bid is done in parallel by several processors. Hybrid approaches yield the
maximum speedup, if the number of processors assigned to different tasks is chosen prop-
erly. Bertsekas and Castañon [31] have proposed a hybrid implementation of the auction
algorithm which converges to an optimal solution even in the case of a fully asynchronous
implementation.

Computational results of Phillips and Zenios [141] and Wein and Zenios [167] show that mas-
sively parallel architectures are appropriate for the implementation of the above mentioned
hybrid approach. The obtained speedup is often larger than that achieved by primal-dual
shortest path algorithms. Bertsekas and Castañon [31] show that their hybrid approach
can be implemented efficiently on SIMD architectures. These authors also compare syn-
chronous versus asynchronous algorithms and show that in the case of auction algorithms,
asynchronous implementations really pay off.
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Parallel implementations of primal simplex-based algorithms

Most of the computation load of primal simplex-based algorithms concerns the computation
of the new edge to be included in the basic solution. It would be desirable to include an
edge which violates dual feasibility most, but this requires the computation of the reduced
costs for all edges. Many algorithms compute instead a list of candidate edges to enter the
basis and choose among them the edge which violates dual feasibility at most.

Most of parallel primal simplex-based algorithms compute this list of candidates in parallel.
One possibility is to assign to each processor a set of rows to investigate. Each processor
chooses a pivot row. These rows form a list of candidate edges for pivoting. Then, another
processor performs pivot steps sequentially. This yields a synchronous algorithm. For the
transportation problem such an algorithm has been proposed by Miller at al. [128]. The
computational results of Miller et al. show that such procedures yield a good speedup (3–
7.5, if 14 processors are employed), when applied to dense problems and implemented on a
small-scale coarse-grain parallel system with distributed memory.

Another approach would be to search for edges to enter the basis in parallel, while pivot
operations are taking place, resulting in an asynchronous algorithm. Such an algorithm
was proposed by Peters [138]. The convergence of the algorithm is guaranteed by the so-
called pivot processor which performs a pivot only after having checked whether the pivot is
feasible. It is necessary to check feasibility because the processors searching for pivot edges
do their job while pivots are taking place, and hence, their computations may be based
on out-of-date information. Computational experience on a shared memory machine shows
again a good speedup which increases with the size of the problem. Peter’s results also
show that it pays off to increase the number of processors when the size of the problems
increases. The time needed to perform a pivot operation induces, however, limitations to
the number of processors which may be used efficiently.

A refinement of the algorithm of Peters was proposed by Barr and Hickman [27]. These
authors give an implementation of the algorithm of Barr, Glover, and Klingman [26]. This
implementation does not distinguish between search and pivot processors, all processors
may perform both tasks. The algorithm maintains a queue of tasks and each processors
refers to the queue to receive its task. Also the pivot operations are divided into so-called
basis update and flow update operations, and different groups of operations are performed
by different processors in parallel. Computational results show that this algorithm is faster
than that of Peters. This is mainly due to the efficient use of the processors through the
task assignment approach, but also to the splitting of a long pivot task among two different
processors.

4 Asymptotic Behavior and Probabilistic Analysis

When dealing with the asymptotic behavior of the LSAP, it is always assumed that the cost
coefficients cij are independent random variables with a common prespecified distribution.
The main question concerns the behavior of the expected optimal value of the problem as
its size tends to infinity.

Let us first consider the question whether a random bipartite graph admits a perfect match-
ing. A class of bipartite random graphs (V,W ;E) can be described by specifying the number
of vertices and the probabilities for the existence of each edge. The existence of a perfect
matching in such a graph is intuitively related to the expected number of edges. Erdös and
Rényi [74] have shown that O(n log n) edges do not suffice for the existence of a perfect
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matching. More precisely, for each n ∈ IN the authors introduce a class of random bipartite
graphs G(n) = (V (n),W (n);E(n)) with |V (n)| = |W (n)| = n and |E(n)| = O(n log n), and
show that the probability that a graph chosen uniformly at random from G(n) contains
a perfect matching tends to 0 as n tends to infinity. The reason for this behavior is the
growing probability of the existence of isolated vertices in such graphs as n tends to infinity.

Another scenario is obtained, if a probabilistic model is chosen which avoids isolated
vertices. Consider the class G(n, d) of directed bipartite graphs with n vertices in each
part, where each vertex has out-degree d, and denote by P (n, d) the probability that a
graph chosen uniformly at random from G(n, d) contains a perfect matching. (Matchings
and perfect matchings in directed bipartite graphs are defined as matchings and perfect
matchings of the graphs obtained from the digraphs by removing the orientation of the
edges, respectively.) Walkup [165] shows that P (n, 1) tends to 0, but for all d ≥ 2, P (n, d)
tends to 1 as n approaches infinity. More precisely

P (n, 1) ≤ 3n1/2(
2

e
)n , P (n, 2) ≥ 1 − 1

5n
, and

P (n, d) ≥ 1 − 1

122
(
d

n
)(d+1)(d−2) for all d ≥ 3

Notice that due to the marriage theorem the existence of a perfect matching in an undirected
bipartite graph regular of degree d is trivial.
The above lower bounds on P (n, d) are used by Walkup [166] to show that 3 is an upper
bound on the expected optimal value of the LSAP in the case that the cost coefficients cij
are independent random variables uniformly distributed on [0, 1]. The idea is to consider
sparse subgraphs of the graph G related to the LSAP as described in Section 1. The
considered subgraphs are regular of degree d and have edges with small weights. Choosing
d edges with the smallest weights could create problems since the chosen edges would not be
independent. To avoid this difficulty Walkup replaces each edge by two directed edges with
opposite directions, and chooses their weights from distributions such that the minimum of
the two weights still has uniform distribution on [0, 1]. More precisely, cij can be obtained as
min{aij , bij}, where aij, bij are independent random variables with a common distribution
function F given by F (λ) = 1 − (1 − λ)0.5. Then, with the help of aij and bij graphs from
the classes G(n, d), 1 ≤ d ≤ n, are associated with the n×n cost matrix C = (cij), and the
existence results described above are applied to evaluate the expected value of minφ

∑

i ciφ(i)

by means of conditional probabilities.
Four years later the upper bound of 3 was improved to 2 by Karp [111]. The proofs for
both bounds are non-constructive and do not lead to heuristics which produce assignments
with expected optimal value within the given bounds.

Lower bounds for the expected optimal value of the LSAP with independent and uniformly
distributed costs cij on [0, 1] are given by Lazarus [120]. The author exploits the weak du-
ality and evaluates the expected value of the dual objective function

∑

i ui+
∑

j vj achieved
after the first iteration of the Hungarian method (row and column reductions, see also
Section 3.1). By computations involving first order statistics it is shown that the expected
value of

∑

i ui+
∑

j vj - which is a lower bound for the expected optimal value of the LSAP

- is of order 1 + 1
e + logn

n . This yields a bound of 1.368. Moreover, Lazarus evaluates the
maximum number of 0-s lying in different rows and columns of the reduced cost matrix
after row and column reductions (or, equivalently, after the first iteration of the Hungarian
method). This evaluation implies that the probability of finding an optimal assignment
after row/column reductions tends to 0 as n tends to infinity.
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The lower bound was improved by Goemans and Kodilian [93] to 1.44, and then to 1.51
by Olin [131]. 1.51 is currently the best known value. Goemans and Kodilian propose a
dual heuristic for the LSAP and show that the expected objective function value yielded
by this heuristic is larger than 1.44. The heuristic starts with the dual solution obtained by
applying row/column reductions as in the first iteration of the Hungarian method. Then,
this solution is improved by elementary operations in the fashion of the Hungarian method.
The analysis of the heuristic builds upon the analysis of Lazarus and essentially exploits
the fact that the solution obtained after the first iteration of the Hungarian method is with
high probability highly structured.
Also the best known bound given by Olin [131] is obtained from a feasible solution of
the dual. Again, Olin starts with the solution of the dual obtained by row and column
reductions, after the first iteration of the Hungarian method. Then, this solution is improved
by adding the second smallest element of each row to all elements in that row and by
subtracting to each column the largest among the terms added to the elements of that
column. This transformation leads to a new feasible dual solution which yields an expected
value of the objective function equal to 1.47. By applying then an analogous transformation
starting from the columns of the reduced cost matrix, the bound of 1.51 is obtained.

Summarizing, the gap between the lower and the upper bound on the expected optimal
value of the LSAP is still large. In the case of independent costs cij uniformly distributed
in [0, 1], it is believed that the expected value is close to 1.6 as observed by Donath [72] in

his experiments, or more precisely, equal to π2

6 − o(1)(π
2

6 − 1.645) as suggested by Mezard
and Parisi [127].

Frenk, Houweninge, and Rinnooy Kan [81] as well as Olin [131] have studied the more
general situation of an arbitrary distribution function for the cost elements cij . Frenk et
al. analyze the asymptotic behavior of the first order statistics in the case of distribution
functions F defined on (−∞,+∞) (limn→∞ F−1(1/n) = −∞, F−1 being the inverse of
function F ) which fulfill the conditions

∫ +∞

−∞
|x|F (x)dx <∞ and lim inf

x→+∞

F (−x)
F (−ax) > 1 for some a > 1 ,

as well as for functions F defined on (0,∞) (limn→∞ F−1(1/n) = 0). The estimates on the
first order statistics are then used to evaluate the expected optimal value of the LSAP along
the ideas of Walkup [166]. In the case of functions F defined on (−∞,+∞) the authors
show the following relation for the expectation EZn of the optimal value Zn of the LSAP
of size n

(

1 − 3

2
√
e

)2

≤ lim inf
n→∞

EZn
nF−1(1/n)

≤ lim sup
n→∞

EZn
nF−1(1/n)

<∞ . (14)

In the case that F is defined on (0,∞) an analogous result holds with a lower bound
equal to 0 on the left hand-side of (14). In this second case, Olin [131] imposes further
conditions on F and derives specific bounds which generalize those of Walkup and Lazarus.
More precisely, if (i) F admits a continuous density function which is strictly positive
in a neighborhood of the origin, (ii) F has finite expected value, and (iii) F−1(0+) :=
limy→0+ F−1(y) exists, then

(1 + e−1)F−1(0+) ≤ lim inf
n→∞

EZn ≤ lim sup
n→∞

EZn ≤ 3F−1(0+) .

It seems difficult to derive analogous results which hold almost surely under the above
mild conditions on F . However, for special distributions e.g. the uniform distribution,
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almost sure results can be derived. Olin shows that in this case almost surely the lower
bound equals 1+ e−1 and the upper bound equals 4. This result generalizes to distribution
functions F defined on (0,+∞) and fulfilling the stronger set of conditions posed by Olin.
In this case the following inequalities hold with probability 1:

1 + e−1

f(0+)
≤ lim inf

n→∞
Zn ≤ lim sup

n→∞
Zn ≤ 4

f(0+)
.

Let us now turn to the probabilistic analysis of heuristics for the LSAP. One of the
first results in this area was obtained by Karp [110] and provides an exact algorithm for
the LSAP with expected running time O(n2 log n) in the case of independent costs cij uni-
formly distributed on [0, 1]. The proposed algorithm - which is faster than the best known
sequential algorithm - is a special implementation of the standard shortest augmenting path
algorithm for the assignment problem (see Section 3). It uses priority queues to compute a
shortest augmenting path in O(n2 log n) time and has thus a worst case time complexity of
O(n3 log n). The algorithm tries to reduce the number of insertions in the priority queue at
the cost of a slight increase of the number of deletions. This is done by so-called surrogate
items. Each surrogate item replaces a large number of regular items of the priority queue,
and is used instead of them. In the case of the specific distribution of the costs cij the
surrogate items do indeed represent and replace many regular items, reducing the expected
overall number of operations associated with the queue to O(n2). Considering that each
of the queue-operations takes O(log n) times and that the time for all other operations is
O(n2), we obtain the above mentioned time complexity.

Other results in this area concern heuristics and provide worst case bounds and/or average
case bounds in the case that the costs cij are independently and unformly distributed on
[0, 1]. Avis and Devroye [11] analyze a heuristic for the LSAP proposed by Kurzberg [117].
This heuristic decomposes a large problem of size n = mk, into k2 problems of size m×m
each, solves the smaller problems, and combines their solutions to obtain a solution for the
original problem. In its space-optimal version (k =

√
n) the heuristic takes O(n) space

and O(n2.5) time. In its time-optimal version (k = n3/4) it takes O(n2.25) time and O(n1.5)
space. It is not difficult to show that the worst case ratio of this heuristic is ∞. (By applying
this heuristic to maximize the objective function of the LSAP, one can obtain a worst case
ratio of min{m,k}.) However, in the case of cost coefficients cij uniformly distributed on
[0, 1], the expected value of the solution produced by the heuristic gets smaller than or
equal to k/2 times the expected optimal value, as n tends to infinity.
The first heuristic which produced a solution with expected value within a constant factor
from the optimum value, was proposed by Avis and Lai [12]. This is an O(n2) algorithm
which provides a solution within a factor of 4 from the optimal one (for n ≥ 11), in the case
of the specific distribution of the costs cij . The heuristic elaborates the idea of Walkup [166]
to work with a sparse subgraph of the given graph. The sparse subgraph considered by the
authors has 10n “cheap” edges and contains a perfect matching with high probability. If
necessary, the largest matching contained in this graph is completed to a perfect matching
of the original graph in a greedy way. The good behavior of the heuristic relies on the fact
that the sparse subgraph contains with high probability a cheap perfect matching, i.e., a
good solution of the LSAP instance.
Karp, Rinnooy Kan, and Vohra [112] derive a better heuristic which runs in O(n log n)
time (expected time O(n)) and provides a solution of the LSAP whose value is smaller than
3 +O(n−a), for some a > 0, with probability 1−O(n−a). The basic idea is similar to that
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of Avis and Lai: Construct a “cheap” sparse subgraph of the given graph and show that it
contains a perfect matching with high probability. Again, if the subgraph does not contain
a perfect matching a solution for the original LSAP instance is determined in a greedy way.
The subgraph is introduced in terms of so-called random 2-out bipartite graphs. Such a
graph contains a perfect matching with probability 1 − O(n−a) and the matching can be
found in O(n log n) time. Further, it is shown how to construct a random 2-out bipartite
subgraph with cheap edges for the given LSAP instance. The expected value of a solution
obtained either as a perfect matching in this subgraph, or by applying a greedy approach,
if the former does not exist, equals 3 +O(n−a).

5 Bottleneck Assignment Problems

As mentioned in Section 2 linear bottleneck assignment problems (LBAP)

min
φ

max
1≤i≤n

ciφ(i) (15)

occur in connection with assigning jobs to parallel machines so as to minimize the latest
completion time. The first authors who considered bottleneck assignment problems were
Fulkerson, Glicksberg and Gross [84]. Gross [98] proved the following duality result for
LBAPs which gave rise to the theory of blocking systems, see Edmonds and Fulkerson [73].

Theorem 5.1 (Gross [98], 1959)
Let N = {1, 2, . . . , n} and let Sn be the set of all permutations φ of N . Then, for an
arbitrary n× n matrix C = (cij) of real numbers

min
φ∈Sn

max
i∈N

ciφ(i) = max
A,B⊆N

|A|+|B|=n+1

min
i∈A,j∈B

cij . (16)

So-called threshold algorithms play an important role to solve LBAPs. A threshold
algorithm alternates between two phases. In the first phase a cost element c∗ij - the threshold
value - is chosen and a matrix C̄ is defined by

c̄ij :=

{

1 if cij > c∗ij

0 if cij ≤ c∗ij

In the second phase it is checked, whether the bipartite graph with adjacency matrix C̄
contains a perfect matching or not. The smallest value c∗ij for which the corresponding
bipartite graph contains a perfect matching, is the optimum value of the LBAP (15).
There are several ways to implement such a threshold algorithm. One possibility is to order
the cost elements increasingly and to apply a binary search, in the first phase. This leads to
an O(T (n) log n) algorithm, where T (n) is the time complexity for checking the existence
of a perfect matching. Concerning T (n) see the remarks after Theorem 1.3 in Section 1.
Another possibility is to mimic the Hungarian method. We start with

c∗ := max
i,j

(min
i

cij , min
j

cij) (17)

and grow bottleneck augmenting paths as long as the matrix C̄ does not contain an as-
signment with objective function value equal to 0, see Page [134], Garfinkel [88], Derigs
and Zimmermann [70], Carpaneto and Toth [55] and Derigs [67]. FORTRAN codes for
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this method can be found in the book by Burkard and Derigs [39] and in Carpaneto and
Toth [55]. The implementations differ in the determination of a starting solution and in
the applied data structures. One of the most efficient implementations is described in
Derigs [67]. A similar approach using the framework of strong spanning trees (see also Sec-
tion 3 and Balinski and Gonzalez [21]) is given by Armstrong and Jin [10]. Their algorithm
can be implemented within a running time of O(mn + n2 log n) , where m is the number
of finite entries in matrix C, i.e., the number of edges of the bipartite graph G associated
with the assignment problem.

An algorithm with the currently best time complexity is obtained by combining the
threshold approach with augmenting paths. This idea goes back to Gabow and Tarjan [87],
who gave an algorithm for LBAP with worst case complexity O(m

√
n log n). For dense

graphs this bound has been further improved by Punnen and Nair [150]. According to
these authors we first solve

min
M∈F ∗

max
(i,j)∈M

cij , (18)

where F ∗ is the set of all matchings in G which differ from a maximum matching by at most
n
√

n/m edges. Combining the maximum matching algorithm of Alt et al. [9] (see Section
1) with binary search, this problem can be solved in O(n1.5√m) time. Then this solution
is extended to a optimal solution of the bottleneck assignment problem by growing at most
n
√

n/m augmenting paths. Every augmenting path can be completed in O(m) time, see
e.g. Tarjan [159]. Thus the overall complexity of the algorithm becomes O(n

√
nm).

Pferschy [139] describes an algorithm with expected running time O(n2), i.e., linear on
m in the case that the graph G is dense. In a first step the given graph is thinned out
by considering only the 2n log n cheapest edges. This can be done in O(n2) time by using
a linear selection algorithm for finding the 2n log n-smallest edge. In the second step the
LBAP on the sparse subgraph is solved by using the method of Gabow and Tarjan. This
yields O((n log n)3/2) additional elementary operations. Finally the solution is completed
to a perfect matching of the full graph by applying again the algorithm of Gabow and
Tarjan. But this completion step is only necessary with a low probability, namely with a
probability less than O(1/

√
n log n). Thus, the expected time needed by the completion is

O(n2), and we get an overall expected running time of O(n2). This algorithm provides not
only a good bound in terms of complexity, but is also very efficient and simple to use.

In a detailed study Pferschy [140] compared different (deterministic) solution procedures
for LBAPs up to n = 2000. He observed that the fastest algorithm with respect to the
overall running time consists of computing a lower bound for the optimal solution value,
e.g. by (17), then finding a maximum matching (using the Hopcroft-Karp procedure) in the
subgraph consisting of the edges with weight less or equal to this bound, and finally aug-
menting this matching. Moreover, Pferschy noticed that the selection of a sparse subgraph
takes a considerable amount of time, whereas not much computational efforts are needed
to solve the LBAP in sparse subgraphs.

There are again some simple cases when an optimal solution of the LBAP can be given
before hand. As in Section 2 these cases are related to Monge properties of the cost matrix
C.

Matrix C = (cij) is said to be a bottleneck Monge matrix (cf. Burkard et al. [42]), if it
fulfills the following conditions:

max{cij , ckl} ≤ max{cil, ckj} , for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n. (19)
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It is easy to show that the identical permutation is an optimal solution of an LBAP with
a bottleneck Monge cost matrix. An analogous result holds for inverse bottleneck Monge
matrices defined by

max{cij , ckl} ≥ max{cil, ckj} , for 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n. (20)

LBAPs with an inverse bottleneck Monge cost matrix are solved by the permutation φ(i) =
n − i + 1, for all i. The recognition of permuted bottleneck Monge matrices, however, is
more difficult than solving the bottleneck assignment problem directly, see Klinz, Rudolf,
and Woeginger [115], and Burkard et al. [42].

In Pferschy [139] the asymptotic behavior of the LBAP is studied. Pferschy shows that
the expected value of the optimal solution of an LBAP with independently and identically
distributed costs tends towards the infimum of the cost range as the size of the problem
tends to infinity. He derives explicit lower and upper bounds for the optimum value of an
LBAP of size n.

Besides the classical application in scheduling theory bottleneck assignment problems
have also been used in connection with time slot assignment problems (see the description
of the telecommunication problem in the earth-satellite systems, Section 2). One variant of
the time slot assignment problem is to decompose the given traffic matrix in a weighted sum
of at most n permutation matrices such that T ≤ ∑n

k=1 λkPk, λk ≥ 0 holds and
∑n
k=1 λk

is minimum. Balas and Landweer [13] propose a heuristic for this NP-hard problem: solve
a series of bottleneck assignment problems in order to determine the weights λk.

A multi-level bottleneck assignment problem has been considered by Carraresi and
Gallo [50] in connection with the bus drivers’ rostering problem: Daily shifts are to be
assigned to bus drivers. To each shift a weight is assigned. This weight represents the cost
of the shift for the drivers, e.g., length of the shift, lateness, time to reach the starting
point etc. The problem of finding an equal balance of the shifts leads to minimizing the
total weight of the shifts assigned to a single driver. For solving this NP-hard optimization
problem the authors propose to solve a sequence of bottleneck assignment problems.

Lexicographic bottleneck assignment problems (LexBAP) have been considered by
Burkard and Rendl [43]. Let C = (cij) be a real n × n matrix and let φ be a permutation
of the set {1, 2, . . . , n}. Now let cφ be the vector where the n cost coefficients ci,φ(i),
1 ≤ i ≤ n, are ordered decreasingly. The lexicographic bottleneck assignment problem asks
for a solution φ∗ with

cφ∗ = lexminφ∈Sn
cφ.

The authors propose two solution approaches. The first one scales the cost coefficients
and transforms the LexBAP in a sum assignment problem. (A similar transformation of
bottleneck assignment problems in sum assignment problems had already been proposed by
Page [134]). In a second approach the LexBAP is iteratively solved by a series of bottleneck
and sum assignment problems. If the LexBAP has k distinct cost coefficients and we denote
the computational complexity of the sum assignment problem by T (n), then LexBAP can be
solved in O(T (n)n2 log k) time. Bardadym [25] suggested the following improved algorithm.
Order the k distinct cost elements decreasingly and represent any cost coefficient cij by a
vector dij = (d1

ij , d
2
ij , . . . , d

k
ij) with k elements, where drij = 1, if cij is the r−largest cost

coefficient, and drij = 0, otherwise. In this model the lexicographic bottleneck assignment
problem becomes a lexicographic vector assignment problem which fits in the framework
of algebraic assignment problems (see Section 6). The solution of this problem involves
O(kT (n)) elementary operations.
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Balanced assignment problems have been considered by Martello, Pulleyblank, Toth,
and de Werra [125]. Given a real n×n matrix C = (cij), the balanced assignment problem
can be formulated as

min
φ

[

max
i
ciφi − min

i
ciφi

]

.

For solving this problem the authors sort the entries cij non-decreasingly and propose the
following O(n4) procedure:

1. Solve the corresponding bottleneck assignment problem. Let φ∗ be its optimal solu-
tion.

2. Define
l := min

i
ciφ∗(i), u := max

i
ciφ∗(i).

If l = u, stop. A balanced solution has been found. Otherwise go to Step 3.

3. Delete in C all elements ≤ l and > u and grow augmenting paths.
If there exists a perfect matching, set φ∗ equal to that solution and go to Step 2. If
no solution exists, then go to Step 4.

4. If u is already the maximum element of matrix C, stop. The present solution is
optimal. Otherwise increase u to the next larger element and return to Step 3.

6 Assignment Problems with Other Objective
Functions

As pointed out by Burkard, Hahn, and Zimmermann [41], sum and bottleneck assignment
problems are just special cases of a more general problem, the so-called algebraic assignment
problem which can also be solved efficiently.

Let (H, ∗,≺) be a totally ordered commutative semigroup with composition ∗ and order
relation ≺. The algebraic assignment problem (AAP) with cost coefficients cij ∈ H can be
formulated as

min
φ∈Sn

c1φ(1) ∗ c2φ(2) ∗ · · · ∗ cnφ(n) . (21)

For deriving efficient solution procedures we require some additional properties for (H, ∗,≺).
We assume that the order relation is compatible with the composition, i.e.,

a ≺ b⇒ a ∗ c ≺ b ∗ c for a, b, c ∈ H ,

and that H is a so-called d-monoid , i.e.,

a ≺ b ⇒ there exists c ∈ H such that a ∗ c = b.

As we will see below, under these conditions the AAP can be solved in O(n4) time. If
we additionally require that the weak cancellation rule

if a ∗ c = b ∗ c, then either a = b or a ∗ c = b

applies, the complexity can be improved to O(n3), see Burkard and Zimmermann [46]. For
further results in this direction, consult the survey on algebraic optimization by Burkard
and Zimmermann [47].

Special models for d-monoids are:
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• H = IR with addition as composition and the usual (or inverse) order relation. This
model leads to sum assignment problems (with a minimization or a maximization
objective function).

• H is the set of extended real numbers ĪR (including −∞) with the usual order relation.
The composition is defined by a ∗ b := max (a, b). This model leads to bottleneck
assignment problems.

• H = IRn, the composition is the vector addition and the order relation is the lexico-
graphical order. This leads to lexicographical sum assignment problems.

• H = IR × ĪR, ≺ is the lexicographical order and the composition is defined by

(a, b) ∗ (c, d) :=

{

(a, b) if a ≥ c

(a, b+ d) if a = c

This leads to the so-called time-cost assignment problem, where a duration measure
tij and a cost cij are assigned under these conditions to each pair (i, j). Among all
assignments which minimize the overall duration we seek for one which minimizes the
overall cost.

• H = [0, 1], the order relation is the usual “greater than or equal to” order ≥, and
the composition is the multiplication of real numbers. This model leads to reliability
assignment problems: max Πn

i=1aiφ(i) over all permutations φ of 1, 2, . . . , n.

Algebraic assignment problems can be solved by performing admissible transformations.
Let us denote

z[C,φ] := c1,φ(1) ∗ c2,φ(2) ∗ · · · ∗ cn,φ(n) .

Definition 6.1 (Admissible transformations)
A transformation T of the n×n matrix C = (cij) to the matrix C̄ = (c̄ij) is called admissible
with index z(T ), if

z[C,φ] = z(T ) ∗ z[C̄, φ]

for all φ ∈ Sn.
A composition of admissible transformations S and T with indices z(S) and z(T ), re-
spectively, is again an admissible transformation with index z(S) ∗ z(T ). Now we get the
following optimality criterion:

Theorem 6.2 Let T : C 7→ C̄ be an admissible transformation such that there exists a
permutation φ̂ with the following properties:

1. z(T ) ∗ c̄ij ≥ z(T )

2. z[C̄, φ̂] ∗ z(T ) = z(T ).

Then φ̂ is an optimal assignment with value z(T ).

Proof. Let φ be an arbitrary permutation. According to Definition 6.1 and properties (1)
and (2) of the proposition above we get:

z[C,φ] = z(T ) ∗ z[C̄, φ] ≥ z(T ) = z(T ) ∗ z[C̄, φ̂] = z[C, φ̂]

Therefore φ̂ is optimal.

Admissible transformations for assignment problems are described by the following theorem:
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Theorem 6.3 (Admissible transformations for assignment problems [41], 1977)
Let I, J ⊆ {1, 2, . . . , n}, m := |I| + |J | − n ≥ 1, and c := min{cij : i ∈ I, j ∈ J}. Then the

transformation C 7→ C̄ defined by

c̄ij ∗ c = cij , for i ∈ I, j ∈ J

c̄ij = cij ∗ c , for i 6∈ I, j 6∈ J

c̄ij = cij , otherwise

is admissible with z(T ) = c∗ c∗ · · · ∗ c, where the expression on the right hand-side contains
m factors.

For solving an algebraic assignment problem we can use now the following procedure:

1. Perform row reductions, i.e., perform admissible transformations with I = {i}, J =
{1, 2, . . . , n}. Start with i = 1 and let z := z(T ) be the corresponding index. Continue
with i = 2, . . . , n and update z := z∗z(T ). Afterwards all elements are “nonnegative”,
namely c̄ij ∗ z ≥ z.

2. Perform column reductions, i.e., perform admissible transformations with J = {j}, I =
{1, 2, . . . , n},, for j = 1, 2, . . . , n. Afterwards every row and column contains at least
one generalized 0-element , i.e., an element which fulfills

z ∗ c̄ij = z .

3. Determine a maximum matching in subgraph of the bipartite graph associated with
the assignment problem, which contains only the edges corresponding to the general-
ized 0-elements, (cf. Theorem 1.6).

4. If the maximum matching is perfect, then stop: the optimal solution is given by this
matching and z is the optimal value of the objective function.
Otherwise, go to Step 5.

5. Determine a minimum cover of the “0-elements”. This cover yields the new index
sets I and J . I contains the indices of the uncovered rows, J contains the indices of
uncovered columns.

6. Perform an admissible transformation determined by the new index sets I and J as
in Theorem 6.3, update z := z ∗ z(T ), and go to Step 3.

It is rather straightforward to show that this algorithm yields after at most n2 − 2n + 3
admissible transformations an optimal solution of the algebraic assignment problem. If the
composition ∗ is specialized to “+”, it becomes a variant of the Hungarian method. If the
composition is specialized to the max operation, then we obtain the bottleneck assignment
problem and the above algorithm is a variant of the threshold method.

Analogously to (sum) Monge and bottleneck Monge matrices, we can also define Monge
matrices in the case that cij are taken from the ordered semigroup H, cf. Burkard et al. [42].
The AAP with an algebraic Monge cost matrix is again solved to optimality by the identity
permutation. The problem of recognizing permuted algebraic Monge matrices is rather
subtle. Woeginger [169] has shown that this problem is NP-hard, if n ≥ 3 and the ordered
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semigroup fulfills no additional property. It becomes polynomially solvable, if e.g. a weak
cancellation rule of the form

a ∗ c = b ∗ c⇒ a = b or a ∗ c = c , for a, b, c ∈ H

is fulfilled. For details see Burkard et al. [42].

7 Available computer codes and test instances

FORTRAN listings of a primal-dual algorithm for the LSAP, based on shortest path com-
putations done by a version of Dijkstra’s algorithm, can be found in the book by Burkard
and Derigs [39]. In that book there is also a code of an algorithm for the linear bottleneck
assignment problem (LBAP). This algorithm is obtained as an adaptation of the above
mentioned LSAP algorithm to the LBAP, and is described in detail by Derigs and Zim-
merman [70]. The differences between the two algorithms are discussed by Burkard and
Zimmermann [46].

Source codes of another primal-dual algorithm for the LSAP can be downloaded from
http://207.158.230.188/assignment.html. One can choose among a C++, a PASCAL,
and a FORTRAN implementation of the algorithm of Jonker and Volgenant [108] for dense
LSAPs, and among a FORTRAN and a PASCAL implementation for sparse LSAPs. There
are also PASCAL and FORTRAN codes of an adaptation of the above mentioned algorithm
to the LBAP. All codes are available as zip files.

A (compressed) FORTRAN source file - called 548.Z - of an implementation of the Hun-
garian algorithm, due to Carpaneto and Toth [54], can be downloaded from
ftp://netlib.att.com in /netlib/toms. Other listings of FORTRAN codes for the LSAP
can be found in Carpaneto, Martello, and Toth [51]. These codes are also available from
the floppy disc included in the book [51].

The C code (compressed tar) of an efficient implementation of the scaling push-relabel algo-
rithm of Goldberg and Kennedy [94] for the LSAP can be downloaded from Goldberg’s net-
work optimization library at http://www.neci.nj.nec.com/homepages/avg/soft.html.

Finally, listings of 5 FORTRAN codes of auction algorithms for the LSAP can be found in
Bertsekas’ homepage at http://web.mit.edu/dimitrib/www/auction.txt.
The codes are: AUCTION - a forward auction algorithm for symmetric assignment problems,
i.e., problems where the cost matrix is symmetric,
AUCTION FLP - a version of AUCTION which emploies floating point arithmetic, AUCTION AS

- an auction algorithm for the asymmetric LSAP, AUCTION FR - a forward-reverse auction
algorithm for symmetric LSAPs, and NAUCTION SP - a combination of the naive auction
algorithm with sequential shortest paths methods.

Test instances of the LSAP can be downloaded as ascii files from the homepage of the
OR-Library maintained by J. Beasley at http://mscmga.ms.ic.ac.uk/pub.
Other test instances can be obtained as ascii or uuencoded files from the ELIB library at

ftp://ftp.zib.de/pub/Packages/mp-testdata/assign/index.html.

Let us notice that due to the equivalent formulation of the LSAP as a minimum cost
flow problem, algorithms developed for the later can also be applied to the LSAP. How-
ever, such algorithms are not supposed to exploit the specific features of the LSAP, and
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hence may not be competitive with algorithms developed especially for the LSAP. Besides
Goldberg’s network optimization library and Bertsekas’ homepage, other codes for network
optimization can be found in Netlib at

http://www.OpsResearch.com/OR-Links/index.html.
Furthermore, C codes (compressed tar files) of implementations of the primal and the dual
network simplex algorithm, due to Löbel, can be obtained through

http://www.zib.de/Optimization/index.de.html.

8 Multidimensional Assignment Problems

8.1 General Remarks and Applications

Multi-dimensional (sometimes referred as multi-index ) assignment problems (MAP) are
natural extensions of the linear assignment problem. They have been considered for the
first time by Pierskalla [143]. The most prominent representatives of this class are axial
and planar 3-dimensional assignment problems, which are treated in the subsections below.
The general formulation of the MAP is

min
n
∑

i1=1

· · ·
n
∑

iN=1

ci1···idxi1···id

s.t.
n
∑

i2=1

· · ·
n
∑

id=1

xi1···id = 1, i1 = 1, . . . , n, (22)

n
∑

i1=1

· · ·
n
∑

ik−1=1

n
∑

ik+1=1

· · ·
n
∑

id=1

xi1···id = 1,

for k = 2, . . . , d− 1, and ik = 1, 2, . . . , n,
n
∑

i1=1

· · ·
n
∑

id−1=1

xi1···id = 1, id = 1, . . . , n,

xi1···id ∈ {0, 1} for 1 ≤ i1, i2, . . . id ≤ n,

with nd cost coefficients ci1···id .
Differently stated the MAP asks for d − 1 permutations φ1, φ2, . . . , φd−1 such that the
objective function becomes minimum:

min
φ1,φ2,...,φd−1

n
∑

i=1

ciφ1(i)φ2(i)...φd−1(i) .

The multidimensional assignment problem is NP-hard in general, but in the case that
the array of the cost coefficients is a Monge array (see [42]), it is solved by the identical
permutations φi = id, for i = 1, 2, . . . , d − 1. A slightly weaker condition is considered in
Fortin and Rudolf [79]. Burkard, Rudolf and Woeginger [45] have shown, however, that
the MAP remains NP-hard for d ≥ 3 , if the cost array is inverse Monge. This implies
that maximizing the objective function with cost elements drawn from a Monge array is
NP-hard.
In terms of graphs a multidimensional assignment problem can be described as follows:
Let a complete d-partite graph G = (V1, V2, . . . , Vd;E) with vertex sets Vi, |Vi| = n, i =
1, 2, . . . , d, and edge set E be given. A subset X of V =

⋃d
i=1 Vi is a clique, if it meets

every set Vi in exactly one vertex. A d-dimensional assignment is a partition of V into n
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pairwise disjoint cliques. If c is a real valued cost function defined on the set of cliques
of G = (V1, V2, . . . , Vd;E), the d-dimensional assignment problem asks for a d-dimensional
assignment of minimum cost.

Bandelt, Crama, and Spieksma [24] consider cases where the costs c of a clique are not
arbitrary, but given as a function of elementary costs attached to the edges of the complete
d-partite graph. The costs of a clique considered in [24] are sum costs (sum of the lengths
of edges induced by the clique), star costs (minimum length of a spanning star), tour costs
(minimum cost of a traveling salesman tour in the clique), and tree costs (minimum cost of a
spanning tree in the clique). The authors derive worst case bounds on the ratio between the
costs of solutions obtained by applying simple heuristics and the costs of optimal solutions
for these special MAPs.

Multidimensional assignment problems in their general form have recently found some
applications as a means to solve data association problems. More specifically, the central
problem in any multi-target tracking and multi-sensor surveillance is the data association
problem of partitioning the observations into tracks and false alarms in real time. General
classes of these problems can be formulated as multidimensional assignment problems. In
the following we briefly describe such a formulation for a multi-target tracking problem.
The reader is referred to Poore, Rijavec, Liggins, and Vannicola [147] for more details and an
alternative derivation of the multidimensional assignment formulation. In a target tracking
process we collect reports from different measurements performed at discrete moments in
time denoted by 1, 2, . . . , n. Let us denote by Z(k) a data set of Mk reports (dummy or
missing reports are included) obtained by measurements at time k, and let Zn denote the
cumulative set of Z(k), k = 1, 2, . . . , n,

Z(k) = {zkik}
Mk
ik=0 , Zn = {Z(1), Z(2), . . . , Z(n)} .

The index ik = 0 is reserved for missing reports. We are looking for a feasible partition
γ of the data set Zn into data tracks corresponding to different objects and false alarms,
which leads to a best possible reproduction of the real life situation. A feasible partition
γ = {γ1, γ2, . . . , γn(γ)} consists of n(γ) tracks γj, 1 ≤ j ≤ n(γ) of reports. Each track γj
of a partition γ is given as γj = {z1

i1
, z2
i2
, . . . , znin} and is defined in terms of the properties

it fulfills. First the different tracks may have only missing or dummy reports in common,
and no track consists of only dummy reports:

γi ∩ γj ⊂ {z1
0 , z

2
0 , . . . , z

n
0 } , for i 6= j , and γj 6= {z1

0 , z
2
0 , . . . , z

n
0 } , for all j

Further, the union of all tracks together with the track consisting of only dummy reports
covers the cumulative set of data Zn, and each track contains at least one report from the
set Z(k), 1 ≤ k ≤ n:

Zn =
[

∪n(γ)
j=1 γj

]

∪ {z1
0 , z

2
0 , . . . , z

n
0 } , γj ∩ Z(k) 6= ∅ , for all j, k.

Now we can use 0-1 variables xi1i2...in to characterize a feasible partition γ, where

xi1i2...in =

{

1 if {z1
i1 , z

2
i2 , . . . , z

n
in} ∈ γ

0 otherwise

and the following equalities are fulfilled

M1,M2,...,Mk−1,Mk+1,...,Mn
∑

i1,i2,...,ik−1,ik+1,...,in

xi1i2...in = 1 , for k = 1, 2, . . . , n .
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It is clear that these equalities are similar to those in the formulation (22) of the MAP given
earlier in this section. In the special case where all Mi have a common value we obtain the
constraints of (22).

Let us turn now to the modeling of the objective function. Let γ0 be a reference partition,
e.g. the partition consisting of all false reports, and let P (γ|Zn) be the probability of a
partition γ given the data set Zn. Without going into details - for which the user is referred
to [147] - notice that the maximization of P (γ|Zn)/P (γ0|Zn) over all feasible partitions γ
would be a reasonable objective function from the physical point of view. Under natural
probabilistic assumptions on the space of feasible partitions it can be assumed that

P (γ|Zn)
P (γo|Zn)

= Lγ =
∏

{z1
i1
,z2

i2
,...,zn

in
}∈γ

Li1i2...in ,

where each likelihood ratio Li1i2...in ≡ L(z1
i1 , z

2
i2 , . . . , z

n
in) depends only on the sequence of

reports {z1
i1 , z

2
i2 , . . . , z

n
in} and not on the partition in which this sequence occurs. (The

reader is referred to Poore and Rijavec [146] for a complete list of assumptions under which
this decomposition is allowed.) By introducing ci1i2...in := − lnLi1i2...in for all i1, i2, . . . , in
we get

−ln
[

P (γ|Zn)
P (γ0|Zn)

]

=
∑

{z1
i1
,z2

i2
,...,zn

in
}∈γ

ci1i2...in . (23)

Then the maximization of P (γ|Zn)/P (γ0|Zn) is equivalent to the minimization of the sum
in the right hand-side of (23).

For other applications of MAPs in target tracking problems, like track initiation and
track maintenance, or multi-sensor tracking, the reader is referred to Poore [144] and the
references therein. Some Lagrangian relaxation algorithms for the MAP have been devel-
oped by Poore and Rijavec [146] and Poore and Robertson [148]. These algorithms relax one
or more constraints and derive a set of good Lagrangean multipliers, e.g. by standard non-
smooth optimization techniques, in a first phase. In a second phase they involve a so-called
recovery procedure to construct a good feasible solution of the original problem starting
from an optimal (or good) solution of the relaxed problem with values of Lagrangean multi-
pliers determined in the first phase. A numerical study of data association problems arising
in multi-target and multi-sensor tracking is given in Poore [145].

Pusztaszeri, Rensing, and Liebling [149] describe another interesting MAP which arises
in the context of tracking elementary particles. By solving a five-dimensional assignment
problem, they reconstruct tracks generated by charged elementary particles produced by
the Large Electron-Positron Collider (LEP) at CERN institute.

8.2 Axial 3-Dimensional Assignment Problems

Consider n3 cost coefficients cijk. The axial 3-dimensional assignment problem (3-DAP)
can then be stated as

min
n
∑

i=1

n
∑

j=1

n
∑

k=1

cijkxijk

s.t.
n
∑

j=1

n
∑

k=1

xijk = 1 , i = 1, 2, . . . , n ,
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n
∑

i=1

n
∑

k=1

xijk = 1, i = 1, 2, . . . , n , (24)

n
∑

i=1

n
∑

j=1

xijk = 1, i = 1, 2, . . . , n ,

xijk ∈ {0, 1} ∀ 1 ≤ i, j, k ≤ n .

The name stems from the model which assigns the 1-s on the right hand-side to distinct
positions at the axes of a 3-dimensional array. The sum over the corresponding “flat” in
the array must equal the amount assigned to the position on the axis, see Fig. 5. We can
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Figure 5: a) A geometric representation of the axial 3-dimensional
assignment problem for n = 3. b) A geometric representation of
the planar 3-dimensional assignment problem for n = 3.

think of cijk as the cost of assigning job j to be performed by worker i in machine k. It
follows that xijk = 1, if job j is assigned to worker i in machine k, and xijk = 0, otherwise.
A feasible solution of the above problem will be a three dimensional permutation array ,
i.e., a 0-1 array that satisfies the above assignment constraints.
Equivalently, a 3-DAP can be described with the help of two permutations φ and ψ

min
φ,ψ∈Sn

n
∑

i=1

ciφ(i)ψ(i). (25)

Thus this problem has (n!)2 feasible solutions. Karp [109] showed that the 3-DAP is NP-
hard in contrast to the sum linear assignment problem (LSAP).

In terms of graph theory, the 3-DAP can be stated as follows: Given a complete 3-partite
graph Kn,n,n with disjoint vertex sets U ,V , and W , find a subset A of n triangles, A ⊆
U × V ×W , such that every element of U ∪ V ∪W occurs in exactly one triangle of A and
the total cost

∑

(i,j,k)∈A cijk is minimized.

Euler [75] started the investigation of the axial 3-index assignment polytope (i.e., the
convex hull of feasible solutions to problem (24)) by considering the role of odd cycles for
a class of facets of this polytope. Independently Balas and Saltzman [16] investigate in
detail the polyhedral structure of the three-index assignment polytope, and show that this
polytope has dimension n3−3n+2. They describe an O(n4) separation algorithm for facets
induced by certain cliques. Balas and Qi [15] continue the above work and present O(n3)
separation algorithms for earlier identified classes of facets as well as for a new class of
facets. (Note that since there are n3 variables these are linear-time algorithms). Qi, Balas,
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and Gwan [151] base their work on linear-time separation algorithms for different facets
and construct a polyhedral procedure for solving the 3-DAP.

Pierskalla [142] was the first, who proposed a heuristic for solving 3-DAP. As for algorithms
to solve the 3-DAP to optimality, branch and bound is a classical one. Most of the al-
gorithms split the current problem into two subproblems by fixing one variable xijk to 1
and to 0, respectively. In this way the size of the first subproblem decreases. Balas and
Saltzman [17] have introduced a branching strategy that exploits the structure of the prob-
lem and allows to fix several variables at each branching node. Burkard and Rudolf [44]
experiment with different branch and bound schemes for the 3-DAP. In particular, they
investigate branching rules stemming from the polyhedral description of the underlying
polytope, see Balas and Saltzman [16].

Hansen and Kaufman [100] describe a primal-dual method similar to the Hungarian method
for linear assignment problems. In the case of 3-DAPs, hypergraphs have to be considered
instead of bipartite graphs. First as many 0-elements as possible are generated among the
cost coefficients by generalized row- and column reductions. Then a covering problem is
solved for these 0-elements. If the covering number is smaller than n, further 0-elements
are generated by means of an admissible transformation similar to those in Section 6. If
the covering number equals n, the corresponding stability problem is solved. Notice that
for hypergraphs the minimum number of (hyper-)edges in a cover is in general strictly
larger than the cardinality of a stable set, and this is an inherent difficulty for this problem
class. If the stability number equals n, an optimal solution has been found, otherwise a
branching is performed. Note the similarity of this method with the approach in Section 6
for solving algebraic assignment problems. Due to this similarity the same algorithm solves
the “algebraic” version of the 3-DAP with cost coefficients drawn from a d-monoid. The
subproblems of finding a minimum cover and a maximum stable set are in this case, however,
NP-hard.

Admissible transformations for 3-DAP are described by the following theorem due to
Burkard and Fröhlich [40]. Let us first introduce some notation. Let N := {1, 2, . . . , n},
I,J ,K ⊆ N and denote Ī := N \ I J̄ = N \ J , K̄ = N \K. With these definitions we get

Theorem 8.1 (Admissible transformations for the 3-DAP [40], 1980
Let a 3-DAP with cost coefficients cijk, i, j, k = 1, 2. . . . , n, be given. For I, J,K ⊆ N with
m := n− (|I| + |J | + |K|) ≥ 1 and

c := min{cijk: (i, j, k) ∈ Ī × J̄ × K̄}

we define

c̄ijk := cijk − c , (i, j, k) ∈ Ī × J̄ × K̄

c̄ijk := cijk + c , (i, j, k) ∈ (Ī × J ×K) ∪ (I × J̄ ×K) ∪ (I × J × K̄)

c̄ijk := cijk + 2c , (i, j, k) ∈ I × J ×K

c̄ijk := cijk , otherwise

Then, for any feasible solution φ,ψ of the 3-DAP we have

n
∑

i=1

ciφ(i)ψ(i) =
n
∑

i=1

c̄iφ(i)ψ(i) +mc.
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Clearly, row and column reductions are special cases of the admissible transformations
described by the above theorem.

Strong lower bounds are essential for a branch and bound procedure. One of the ap-
proaches used to compute lower bounds for the 3-DAP is Lagrangean relaxation. By taking
two blocks of the constraints of a 3-DAP into the objective function via Lagrangean mul-
tipliers, we get a Lagrangian relaxation of (24) (cf. [40]):

L(π, ǫ) := min







n
∑

i=1

n
∑

j=1

n
∑

k=1

(cijk + πj + ǫi)xijk −
n
∑

j=1

πj −
n
∑

i=1

ǫi







such that
n
∑

i=1

n
∑

j=1
xijk = 1 , k = 1, 2, . . . , n

xijk ∈ {0, 1} , 1 ≤ i, j, k ≤ n

π ∈ IRn, ǫ ∈ IRn .

L(π, ǫ) is a concave function, and a subgradient method can be used to find its maximum.
Let r be a counter of iterations. Start with πr := ǫr := 0 for r = 0. In each iteration r use
a greedy algorithm to minimize L(πr, ǫr). Let xrijk be the corresponding optimal solution.
Define vri0 := |{xri0,j,k:xi0,j,k = 1}|−1 for i0 = 1, 2, . . . , n, and wrj0 := |{xri,j0,k:xi,j0,k = 1}|−1
for j0 = 1, 2, . . . , n. If vr = wr = (0, 0, . . . , 0), then the maximum is reached. Otherwise π
and ǫ are updated by setting

πr+1 := πr + λrw
r, ǫr+1 := ǫr + λrv

r ,

where λ is a suitable step length λ. This procedure is repeated a prespecified number of
iterations.

Another subgradient procedure for solving a Lagrangean relaxation of the 3-DAP together
with computational considerations has been described by Frieze and Yadegar [83]. Burkard
and Rudolf [44] report on satisfactory computational results obtained by an algorithm which
uses the classical branching rule combined with a reduction step in every node of the search
tree. The lower bound computation is done by applying the above described subgradient
optimization procedure. Another branch and bound algorithm proposed by Balas and
Saltzman [17] solves another Lagrangean relaxation to compute the lower bounds. This
relaxation incorporates a class of facet inequalities and is solved by a modified subgradient
procedure. The upper bounds are computed by a primal heuristic based on the principle of
minimizing maximum regret, plus a variable depth interchange phase. A novel branching
strategy fixes several variables at each node and reduces the size of the branching tree. The
authors report on satisfactory numerical results.

There exists a number of polynomially solvable special cases of the 3-DAP. As mentioned
in Section 8.1, the 3-DAP becomes polynomially solvable, if the cost coefficients are taken
from a 3-dimensional Monge array (see [42]). Burkard, Rudolf, and Woeginger [45] inves-
tigate 3-DAPs with decomposable cost coefficients, where cijk = uivjwk and ui, vj , and wk
are nonnegative. It is shown that the maximization version of this problem is polynomially
solvable, whereas the minimization is in general NP-hard. Moreover, several polynomially
solvable special cases of the minimization problem are identified.

Crama and Spieksma [61] consider special cases of the graph theoretic formulation of the
3-DAP. They assume that the lengths of the edges of the underlying 3-partite graph fulfill
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the triangle inequality, and that the cost of a triangle is defined either as sum of the lengths
of its sides (problem T∆) or as sum of the lengths of the two shorter sides (problem S∆).
The authors prove that the corresponding 3-DAPs are NP-hard. They design, however,
heuristics which always deliver feasible solutions whose corresponding value of the objective
function is within 3/2 (4/3) from the optimal value, in the case of T∆ (S∆). of the optimal
cost. Computational experiments show that the performance of these heuristics is very
good on randomly generated instances.

8.3 Planar 3-Dimensional Assignment Problems

Let n3 cost coefficients cijk be given. Planar 3-dimensional assignment problems (3-PAP)
have the following form.

min
n
∑

i=1

n
∑

j=1

n
∑

k=1

cijkxijk

s.t.
n
∑

i=1

xijk = 1 , j, k = 1, 2, . . . , n , (26)

n
∑

j=1

xijk = 1 , i, k = 1, 2, . . . , n ,

n
∑

k=1

xijk = 1 , i, j = 1, 2, . . . , n ,

xijk ∈ {0, 1} i, j, k = 1, 2, . . . , n .

For a geometric interpretation of the 3-PAP see Fig. 5. Every “flat” in the three-dimensional
array xijk must contain a (2-dimensional) assignment. Thus the feasible solutions of the
3-PAP correspond to Latin squares. Fig. 6 shows a feasible solution for a 3-PAP with
n = 3: number 1 represents the assignment in the lowest horizontal flat, number 2 shows
the assignment in the medium flat, and 3 represents the assignment in the upper flat. Due
to this interpretation, the number of feasible solutions of a 3-PAP of size n equals the
number of Latin squares of order n, and hence increases very fast. The number of different
Latin squares of order d equals d!(d − 1)!T (d), where T (d) is the number of reduced Latin
squares. There is not much known about T (d), the largest value known so far seems to be
for d = 9. T (9) =377,597,570,964,258,816 due to Bammel and Rothstein [23]. An explicit
formula for the number of Latin squares of order d can be found in Shao and Wei [156],
but this formula is difficult to evaluate.

Frieze [82] has shown that the 3-PAP is NP-hard. A description of the polyhedral
structure of the 3-PAP polytope has been given by Euler, Burkard, and Grommes [76].

3-PAPs have interesting applications in time tabling problems. A recent study on time
tables and related polyhedra can be found in Euler and Verge [77].

There are not many algorithms known for the 3-PAP. The first branch and bound algo-
rithm goes back to Vlach [163]. Vlach computes the lower bounds by applying (generalized)
row and column reductions similar to those used in the case of 3-DAPs. Another branch
and bound procedure for the planar 3-index assignment problem has been described by
Magos and Miliotis [124]. To our knowledge this is the only paper reporting on compu-
tational experience with an algorithm which solves the 3-PAP to optimality. The authors
use a so-called relaxation heuristic to compute upper bounds by relaxing the third group of
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Figure 6: A latin square representing a feasible solution of
the planar 3-dimensional assignment problem of size n = 3.

constraints in (26). The remaining problem can be decomposed into n LSAPs, one for each
fixed value of the index k. These LSAPs are solved consecutively, and after solving each of
them a number of variables are fixed so as to guarantee feasibility for the original problem.
The so-found solutions are further improved by a local improvement procedure based on
the relationship between 3-PAPs and Latin squares. More precisely, the current solution
is presented as a Latin square and a cell of the Latin square is selected. The contents of
this cell is changed according to some prespecified rule. Then, the contents of other cells of
the Latin square is changed so as to obtain a new Latin square corresponding to a better
feasible solution of the 3-PAP.
The lower bounds are computed by a heuristic to solve the dual and - in a small number
of branch and bound nodes - also by solving a Lagrangean relaxation of the 3-PAP. The
heuristic for the dual is based on row and column reductions in the fashion of the Hungarian
method. The Lagrangean relaxation is obtained by relaxing the third group of constraints
in (26). Good values for the Lagrangean multipliers are found by standard subgradient
optimization techniques (see also Camerini, Fratta, and Maffioli [48]). For each set of
fixed multipliers the relaxed problem can again be decomposed in n LSAPs, and is solved
similarly as in the case of the relaxation heuristic. The algorithm uses depth first search
and the following branching rule. Fix the indices i and j and let Q be a set of indices k such
that {(i, j, k): k ∈ Q} is the set of free variables. The set Q1 contains about half as many
elements asQ, namely the indices k for those free variables with smaller reduced costs. Then
the current node is branched into two new nodes obtained by imposing

∑

k∈Q1
xijk = 0 and

∑

k∈Q\Q1
xijk = 0.

A nice feature of this branch and bound scheme is that the lower bound is additive, and
the lower bounding procedure works with the reduced costs instead of the original costs of
the problem. Numerical experiments with instances of size up to 9 show that this really
helps. As reported in [124], all instances of size 9 are solved in less than 4 minutes of CPU
time.

The neighborhood structure involved in the improvement procedure mentioned above is also
used by Magos [123] in a tabu search algorithm. A move in the neighborhood of some Latin
square is completely determined by changing the contents a certain cell (i, j). This affects
at least 4 other cells and at most 2n of them (n is the size of the problem). These cells
have to be adapted accordingly. There are n2 cells in total and there are n− 1 possibilities
to change the contents of each of them. Consequently, the neighborhood size is between
n(n−1)

2 and n2(n−1)
4 . There are two nice properties of this neighborhood structure. First,

for each move the change of the objective function can be computed in linear time (O(n)).
Secondly, not all moves have to be evaluated in each iteration: moves which put a certain
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element in a certain cell imply the same change in the objective function, independently
from the solution to which they are applied. The other tabu search elements involved in this
algorithm, e.g. tabu size, tabu and aspiration criteria, stopping criterion etc., are designed
and implemented in a standard way. The numerical results show that the algorithm provides
a good trade-off between computation time and solution quality for 3-PAP instances of size
up to 14.
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