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* Importance of understanding and optimizing image formation



Understanding Image Formation
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http://micro.magnet.fsu.edu/primer/java/fluorescence/photobleaching/index.html

* Photobleaching results in gradual decreasing of image signal
Intensities over time under repetitive exposure.



Optimizing Image Formation

* Bioimage data collection and data analysis must be collaborative

processes.

— Images that are improperly collected cannot be analyzed.
E.g. violation of Nyquist sampling

— Optimization of image collection can significantly simplify data analysis.

This requires concurrent design of imaging and data analysis.



Example: Imaging Axonal Cargo Transport

Sl sl St Deor iU mncos T Optigc lobe  Ventral ganglion Segmenjal nerves

Saxton lab, UC Santa Cruz

axonal transport of human APP-YFP vesicles; 0.1 sec/frame 10 um



Relation between Image Collection and Image Analysis

* Bioimage data collection and data analysis must be collaborative

Processes.

— Image processing and computer vision can significantly reduce
challenges in image collection.
This is one of the purposes of this class.




Example: Image Alignment/Registration

« Alignment of mitotic spindle images

* Introduction to the mitotic spindle
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Demo I Image Alignment
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Demo Il: Image Alignment

-

http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html
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Summary

Image collection and image analysis should be collaborative processes.
Correct collection of image data is essential to subsequent data analysis.

Computational image analysis can help overcome some of the challenges
In image collection.

Understanding image formation is essential to image analysis.

Proper design of image collection can significantly simplify subsequence.
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Some basic optics facts
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Reflection & Refraction

e Law of reflection

0,=6,

 Law of refraction
(Snell's law) &
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Refractive Index

e Absolute refractive index of a material

velocity of electromagnetic wave in vacuum
velocity of electromagnetic wave in the material

- Air 1.000293

* Refractive index (also called relative refractive index)
- Water 1.333 7
- Glass ~1.50 n, = —£
- Immersion oil 1.51 n,

15



Minimizing Distortion by Matching Refractive Indices

Water Dipping and Immersion Objectives
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http://www.microscopyu.com/articles/optics/waterimmersionobjectives.html
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Spectrum of Visible Light
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Photon Energy

e Energy of a photon: Planck's
law ; :
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Why Use Light Microscopy?

* Microscopy makes it possible to
visualize cell structure and

dynamics. E
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* Light microscopy permits live
Imaging of cellular processes.
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e Electron microscopy provides
higher resolution but requires
samples to be fixed.
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Light microscope structure
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Origination of Light Microscopes

Light microscope was invented more than three hundred years ago.
(Micrographia, Robert Hooke, 1665)

Spaciisn N ¥ Hooke Microscope

(circa 1670)

L7 . .
o1 http://micro.magnet.fsu.edu/index.html
Molecular expressions: microscopy world
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Two Microscope Configurations

Upright Inverted

http://www.olympusamerica.com/seg_section/seg_home.asp

* Modern microscopes are computer-controlled .

* Modern microscopes can be configured to be highly automated.
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Some Reference Information

« Major microscope manufacturers

DLYMPUS m teica
| Nikon -

MICROSYSTEMS

e Basic microscope structures and performance from
different suppliers are very similar.
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Some Reference Information

R EXPRESSIONS &

http://micro.magnet.fsu.edu/index.html

.:, ‘tEg(pl}nF'iﬁ_'theﬂ_@urld,_uf r&,_;'__-_i_ ol Molecular expressions: microscopy world
o ;_D‘ﬁ‘tfcg'*ﬁ’hd MiErnscnpy‘? =2 i

Michael W. Davidson
Florida State University

http://www.olympusmicro.com/

MICROSCOPY | http://www.microscopyu.com/

THE SOURCE FOR MICROSCOPY EDUCATION

m http://zeiss-campus.magnet.fsu.edu/index.html
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External Structure of Modern Microscopes

Upright Inverted
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Internal Structure of Modern Microscopes
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Light Path Components (I)
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Light Path Components (ll)
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Contrast generation in microscopy
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Contrast Generation in Light Microscopy

 Two fundamental roles of any microscope
- To provide adequate contrast
- To provide adequate resolution.

e Contrast generation

— Transmitted light illumination vs reflected light illumination
— Bright-field vs dark-field

— Phase contrast

— Fluorescent micros

(A) Bright-field
(B) Phase

(C) DIC

(D) Dark-field

@ - - (8)

Q)
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Reflected Light vs Transmitted Light
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Bright-field vs Dark-field (I)

« Under bright-field contrast, the specimen appears dark
against a bright background.

« Dark-field contrast is particularly useful when imaging thin
filaments or small particles.
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Bright-field vs Dark-field (lII)
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Phase Contrast & DIC ()

Phase contrast is very useful in
Imaging transparent specimens,
which do not change light
magnitude.

Contrast is generated due to the
different refractive indices of the
sample and the background.

Phase contrast can generate

artifacts.

- Halos by boundary
- Artificial shadows

DIC significantly reduces halos
and shadows.

TWO WAVES IN PHASE

SV

BRIGHT

TWO WAVES OUT OF PHASE
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Phase Contrast & DIC (ll)
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What is wrong with ALL the cell images?

(A) | . )

(€) (D) !
50 pm

0 The Nobel Prize in Physics 1953

“for his demonstration of the phase contrast method, especially
for his invention of the phase contrast microscope”

Frits (Frederik)
Zernike

the Netherlands

Groningen University
Groningen, the
Netherlands

b. 1888
d. 1966

36



Green Fluorescence Protein

Jellyfish: Aequorea victoria

http://gfp.conncoll.edu/GFP-1.htm
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Fluorescence Microscopy (I)

Fluorophore Absorption and Emission Profiles -
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Fluorescence Microscopy (I

Fluorophores are available at many different colors

DAPI

420 nm

S 500 nm

7 540 nm

10 um

A\620 nm Blue: chromosome
Green: microtubules
Red: kinetochores

660 nm

EXCITATION EMISSION
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Widefield vs Confocal Microscopy
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Total Internal Reflection Microscopy ()

Typical thickness of the
evanescent layer is less than
200nm 0

Often used for imaging
- membrane related cellular
processes

- single molecules

Total Internal Reflection Fluorescence

Evanescent Wavefront Aqueous
Medium
Fluorophores {n=1.33-137)

3 Excited
e Fluorophore

Glass
Microscope
Slid

e
(n=1.518)

|
Incident Reflected X
Angle Light Waves  Figure 1



Total Internal Reflection Microscopy (Il

TIRF is often used for imaging
- membrane related cellular processes

- single molecules

o (o) (10 Wit e
Yﬂu K xﬂﬁ wy lipid molecule f rotein molecule

rotein molecules
(B) molecule P
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Fluorescence Microscopy Summary

* High specificity:
- Chemical fluorophores
- Fluorescent proteins

* High sensitivity: up to single molecules.
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Practical considerations of microscopy
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Practical Considerations

* Photobleaching
- Fluorophores gradually lose their ability of light emission.

- This results in a sustained decrease in image intensity.

* Phototoxicity

- Constant illumination generates free radicals that cause cell

death.
- This places a fundamental limit on how many frame of images
can be collected.
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Questions?
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