Bioimage Informatics

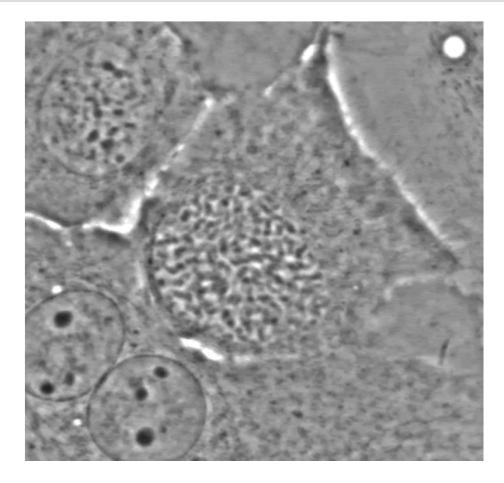
BME42-731/ECE18-795/CB02-740, Spring 2012

Lecture 1 Introduction

Ge Yang, Ph.D.

Department of Biomedical Engineering & Lane Center for Computational Biology

RAY AND STEPHANIE LANE Center for Computational Biology


Outline

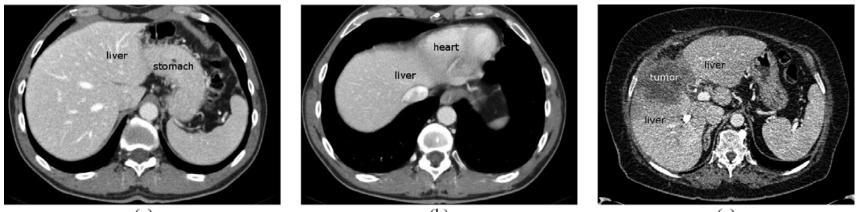
- Introduction to biological imaging
- Overview of bioimage informatics
- Some historical perspectives
- Course objectives
- Course syllabus
- Discussions

• Introduction to biological imaging

- Overview of bioimage informatics
- Some historical perspectives
- Course objectives
- Course syllabus
- Discussions

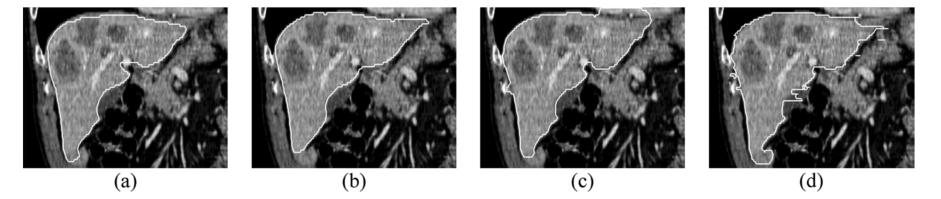
Introduction to Biological Imaging: Phase Contrast (I)

Introduction to Biological Imaging: Phase Contrast (II)

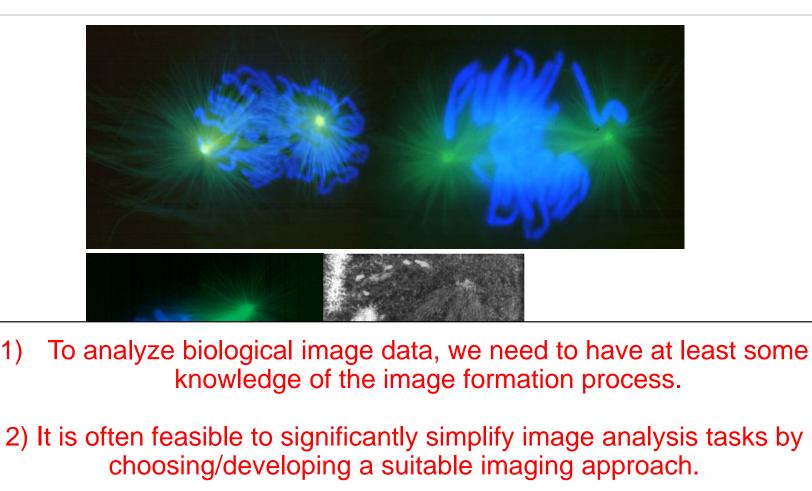

- A main goal of the biologists is to measure/quantify this process.
 - In an adult human, ~25 million cell divisions occur every second.
- How do we do it?
 - For example, we can track the chromosome.
 - But this may be quite challenging.
 - e.g. noisy background; highly dynamic events
 - e.g. cell drift
- Where do we get the techniques?
 - We can borrow techniques from computer vision and medical image analysis.
 - Some customization is likely needed (e.g. halo).

Example: An Application of Computer Vision Techniques

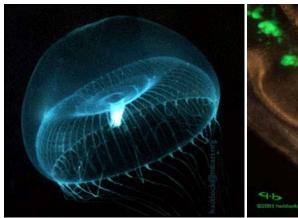
Kanade lab, CMU


Example: An Application of Medical Image Analysis Techniques

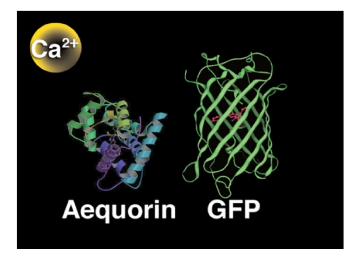
(a)



Heimann et al, <u>Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets</u>, *IEEE Trans. Medical Imaging*, vol. 28, no. 8, 1251-1265, 2009.

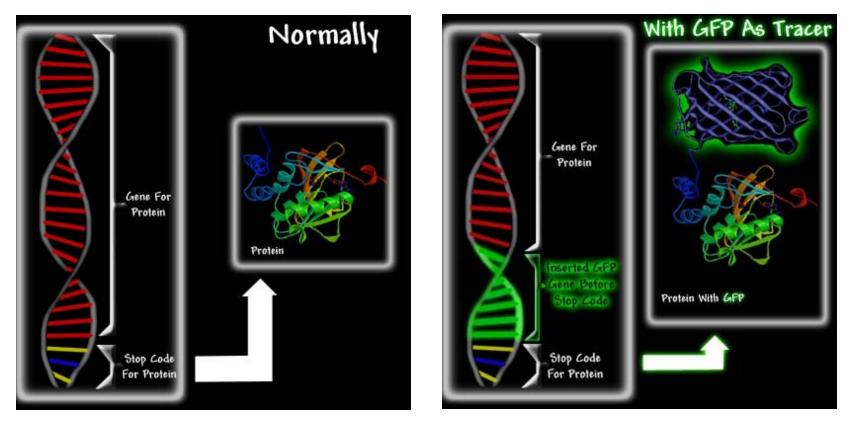

Fluorescence Imaging of Chromosomes

Rieder Lab, Wadsworth Center http://www.wadsworth.org/bms/SCBlinks/web_mit2/res_mit.htm

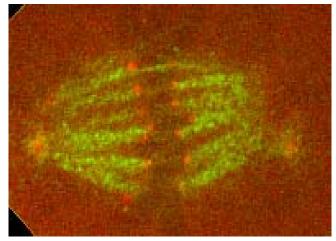

1)

Discovery of Green Fluorescence Protein

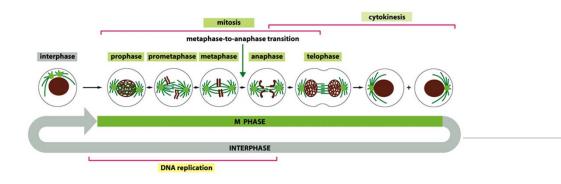
Jellyfish: Aequorea victoria


http://gfp.conncoll.edu/GFP-1.htm

"for the discovery and development of the green fluorescent protein, GFP"



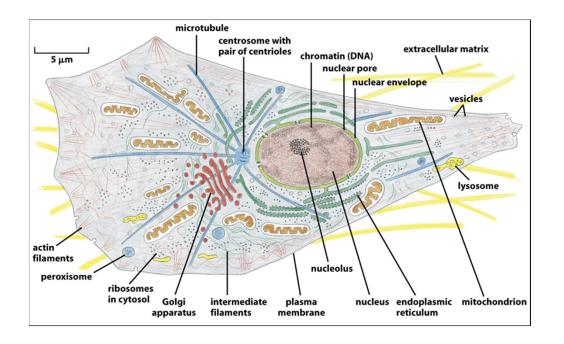
Labeling a Protein Using GFP


http://gfp.conncoll.edu/GFP-1.htm

Mitotic Spindle Visualized by Fluorescence Imaging

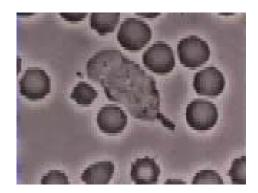
mitotic spindle

What has you noticed from this movie?

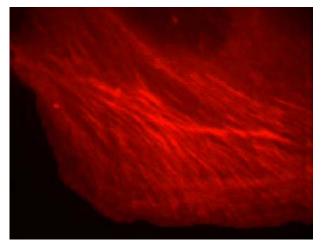


Biological Bioimaging

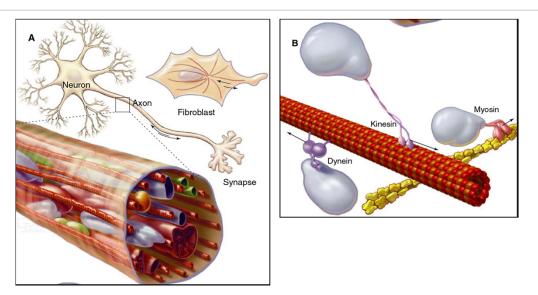
- Biological imaging (bioimaging) refers to the technology and/or process of visualizing biological processes, usually at the cellular and molecular level using microscopes and molecular probes.
- Bioimaging makes it possible to follow spatiotemporal molecular activities with high specificity, high sensitivity, and high resolution.
- The basic paradigm is to label molecules of interests and then follow the labels.


Light Microscopy vs Electron Microscopy

- Above 200nm, conventional light microscopy.
- Below 200nm, electron microscopy; assay must be fixed in preparation.



Example: Actin Network at Cell Leading Edge



A neutrophil chasing a bacterium. *Devreotes Lab, Johns Hopkins U.*

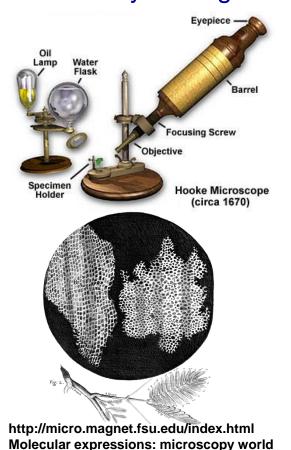
actin network

Example: Axonal Cargo Transport

Images must be transformed into quantitative measurements.

Introduction to biological imaging

- Overview of bioimage informatics
- Some historical perspectives
- Course objectives
- Course syllabus
- Discussions


What is Bioimage Informatics (I)

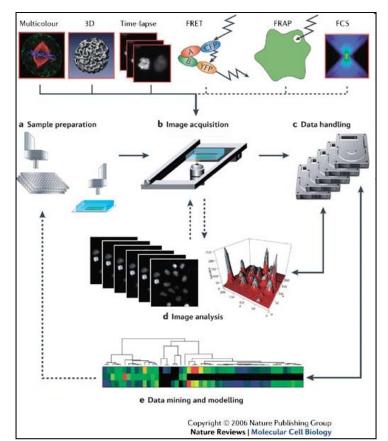
- The main goal of bioimage informatics is to use computational methods to analyze and understand images of biological processes.
- Bioimage informatics is often considered as a branch of bioinformatics and/or computational biology.
- Key components of bioimage informatics
 - low-level image analysis (e.g. feature detection)
 - high-level information extraction (e.g. pattern recognition)
 - image data management (database)
 - image visualization (graphics)

- Introduction to biological imaging
- Overview of bioimage informatics
- Some historical perspectives
- Course objectives
- Course syllabus
- Discussions

Development of Microscopy Techniques

 Microscope was invented more than 300 years ago.

Some Historical Perspectives (I)


- Digital image processing started to become widely applied to bioimage analysis in early 1980s.
 - Shinya Inoue pioneered the use of video devices and image processing in microscopy.
- Computational image analysis can improve image quality.
- Computational image analysis is essential to <u>understand</u> images.

Shinya Inoue, Marine Biology Lab, Woods Hole, MA

Some Historical Perspectives (II)

- Several critical developments in contemporary biology fundamentally changes the nature of bioimage analysis and lead to the origination of bioimage informatics
 - Genomics & proteomics; bioinformatics
 - System biology
 - High throughput screening
- Main challenges
 - Complex image data
 - Very high data volume
 - Complex events

Pepperkok & Ellenberg, *Nat. Rev. Mol. Cell Biol.*, 7:690-696, 2006

- Introduction to biological imaging
- Overview of bioimage informatics
- Some historical perspectives
- Course objectives
- Course syllabus
- Discussions

Course Objectives

- Aim I: To understand fundamentals of biological imaging techniques, especially fluorescence imaging techniques.
- Aim 2: To understand basic concepts and principles of bioimage informatics.
- Aim 3: To be able to use basic computational image analysis techniques to analyze biological image data.
- Aim 4: To understand basic statistical analysis and informatics techniques that are commonly used to analyze biological data.

- Introduction to biological imaging
- Overview of bioimage informatics
- Some historical perspectives
- Course objectives
- Course syllabus
- Discussions

Course Overview

• The course is organized into multiple modules

- Fundamentals of microscopy techniques
- Super-resolution microscopy
- Bioimage data analysis
- Special topics: informatics techniques
- Other molecular-level imaging modalities
- Format
 - Lectures
 - Literature reading + discussion; Reading assignments
 - Lab visit
 - Projects; presentations

Course Organization (I)

My contact information

Office: Mellon Institute 403 Email: geyang@andrew.cmu.edu Phone: 412-268-3186 Web: www.andrew.cmu.edu/user/geyang

Office hours: Friday 1-2PM @ Mellon Institute 403

Teaching assistant contact information

Ms. Anupama Kuruvilla, BME PhD student Email: <u>anupamak@andrew.cmu.edu</u> Office: Center for bioimage informatics, C119-122 Hamerschlag Hall

• Class web page

http://www.andrew.cmu.edu/course/42-731/

Course Organization (II)

• Grading

Category	% of final grade	
5 reading reports	40%	
4-5 projects	50%	
Class participation	10%	

- There will be no mid-term or final exams.
- A note to undergraduate students taking this class.

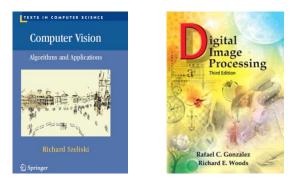
Course Organization (III)

- Students are expected to attend lectures. Repetitive (>3) absences without instructor approval will result in up to 10% deduction of final grade.
- Policy regarding absence from <u>your group presentations</u> without approval by the instructor <u>before</u> the class.

- First time: warning; 10% deduction from final grade

- Second time: warning; final grade lowered by one tier (i.e. A→B; B→C)
- Third time: automatic failure

Comments (I): What to Expect


- Bioimage informatics is interdisciplinary.
 Patience, openness, & inquisitiveness expected
- We will focus on the engineering aspects of bioimage informatics: microscopy, image analysis, and computer vision.
- Required biological background will be introduced.
- This is a research-oriented course. We will read research articles. Often there are no standard solutions.

Comments (II): What to Expect

- All slides will be posted online
 - No need to copy slides in notebooks.
 - Slides from previous semesters are available before class. Revisions are likely as the class proceeds.
 - Revised lecture notes will be posted after classes.
- The list of lectures is for reference only. Adjustments are likely as the class proceeds.

Prerequisites & Textbook (I)

- Image processing
- Proficiency in programming
 - MATLAB is the required implementation language for projects.
- Suggested references
 - Gonzalez & Woods, Digital image processing, 3rd ed., Prentice Hall, 2007.
 - Szeliski, Computer Vision, Springer, 2009.

Prerequisites & Textbook (II)

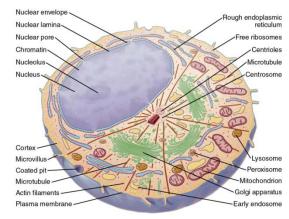
 This class cannot substitute for courses on imaging processing, computer vision, or medical image analysis.

- Introduction to biological imaging
- Overview of bioimage informatics
- Some historical perspectives
- Course objectives
- Course syllabus
- Discussions

Bioimaging vs Medical Imaging

- Different modalities
 - Bioimaging \rightarrow mostly cellular and molecular level.
 - Medical imaging \rightarrow mostly tissue and organ level
- Different techniques & objectives; Some shared principles
 Medical image analysis is technically more mature.
- There is a significant trend of convergence
 - E.g. molecular imaging

Fluorescence Imaging of Neurons in Cerebral Cortex Sections


Livet J, Weissman TA, Kang H, et al. Nature 450: 56–62, 2007

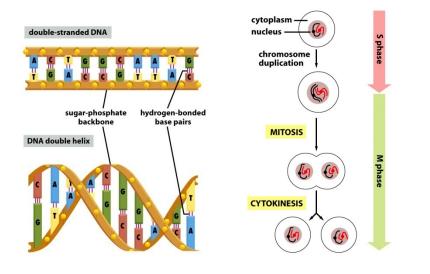
Questions?

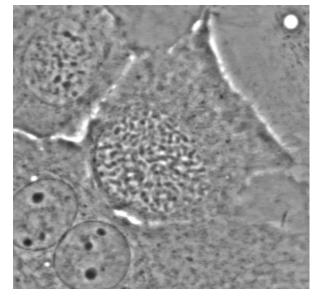
Cells are Extraordinary Engineering Systems

- Structurally, each cell is organized into various subunits that serve different functions
 - material
 - energy
 - motion
 - information
- Each cell is made of a wide variety of molecules, mostly proteins.
- The complex interactions between these molecules define life.
 - e.g. human cognitive processes
- The purpose of bioimage informatics is to use imaging and computation to understand cellular processes.

Α

Pollard & Earnshaw, Cell Biology, 2/e

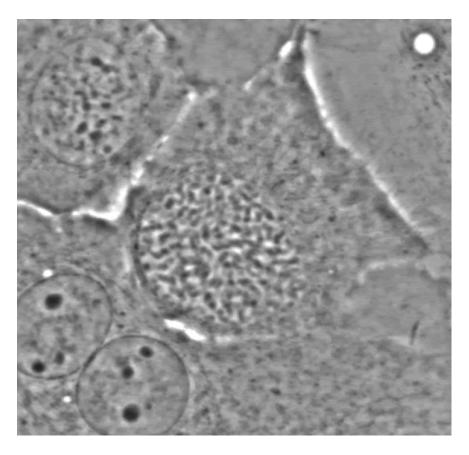

Table 2–2 The Approximate Chemical Composition of a Bacterial Cell


	PERCENT OF TOTAL CELL WEIGHT	NUMBER OF TYPES OF EACH MOLECULE
Water	70	1
Inorganic ions	1	20
Sugars and precursors	1	250
Amino acids and precursors	0.4	100
Nucleotides and precursors	0.4	100
Fatty acids and precursors	1	50
Other small molecules	0.2	~300
Macromolecules (proteins, nucleic acids, and polysaccharides)	26	~3000

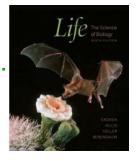
Alberts et al, Mol. Biol. Cell, 5/e

Example I: Information Replication and Transfer

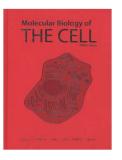
- Hereditary information is stored in DNA.
- DNA is replicated and passed from the mother cell to daughter cells.



- In an adult human, ~25 million cell divisions happen every second.
- In each human cell, ~3.2 billion nucleotide base pairs get copied.
- Highly complex mechanisms of regulation, quality control, and errorcorrection.

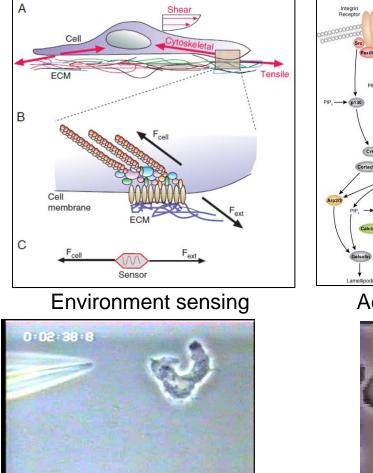

Discussion

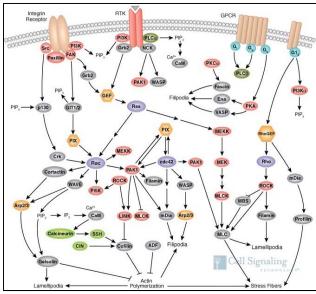
- Cellular processes are highly complex.
- Cellular processes are highly dynamic.
- Understanding cellular processes depends critically on understanding the activities and interactions of the related molecules in <u>space and</u> <u>time</u>.
- Imaging provides a powerful noncontact approach to follow such activities and interactions.


General Biology & Cell Biology References

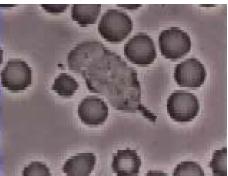
- General biology
 - Life: the science of biology, Savada et al, W. H. Freeman, 2009.

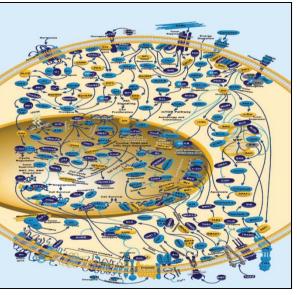
Cell biology


- Molecular Biology of the Cell, 4e/5e, Bruce Alberts et al, Garland Science, 2008


What is Bioimage Informatics (II)

- Interdisciplinary
 - Microcopy (especially fluorescence microscopy)
 - Image processing & computer vision
 - Statistical analysis, pattern recognition, machine learning
 - Molecular biology, biochemistry, genetics
 - Biophysics
- Bioimage data poses fundamental challenges to image analysis and computer vision; e.g.
 - Very large volume of data
 - Highly dynamic and complex events in images
 - Robustness and efficiency requirements for algorithms


Example III: Information Processing and Decision Making


Single dictyostelium cell exposed to cAMP gradient. *Devreotes Lab, Johns Hopkins U.*

Actin regulation pathway

A neutrophil chasing a bacterium. *Devreotes Lab, Johns Hopkins U.*

Human cancer pathways