

Anything, including gold nanoparticle up to ~25 nm diameter, bearing an NLS (or NES) peptide can be imported (exported) through NPCs; Ribosome subunits (10-20 nm are continually exported from the nucleus

Import:

- NLSs include PKKKRKV, KR[PAATKKAGQA]KKKK, etc.

- NLS is recognized by receptors called importins
- Complex then binds NPC and enters the nucleus
- In the nucleus, Ran-GTP dissociates the imported complex

Export:

- NES are hydrophobic
- NES is recognized by a receptors called exportins and require $\ensuremath{\mathsf{Ran}}\xspace{\mathsf{GTP}}$
- Complex then binds NPC, translocates through and

B-type lamins (~1-2 million copies / nuc) Ancestral Expressed in all human cells Essential for LIFE in multicellular eukaryotes Required for DNA replication, mRNA transcription

A-type lamins (~1 million copies / nuc)

Non-essential Absent from stem cells Expressed upon differentiation Partners: Rb, actin, histones, NE proteins

	"Laminopathies"	
Diseases caused by mutations in LMNA or lamin-binding proteins		
Striated muscle+	EDMD EMERIN, NESPRIN-1, NESPRIN-2	
	Limb-girdle muscular dystrophy	EMERIN
	Dilated cardiomyopathy	EMERIN, LAP2
Adipose tissue	Lipodystrophy	Lamin B2
Neurons?	Charcot-Marie-Tooth axonal neuropathy	
Bone+	Mandibuloacral dyspla Heart-Hand syndrome	sia
Human development Restrictive dermopathy (lethal at birth)		
Human aging	Hutchinson-Gilford Progeria Sy atypical Werner Syndrome	vndrome
Profound disruption of lamina network, as seen in progeria patients, disturbs epigenetic regulation		

Other pathologies suggest widespread and subtle roles for lamins and nuclear membrane proteins in human physiology

> White blood cell development/function [LBR] Neutrophil migration/oxidative burst defects; Ichthyosis Pelger-Huet anomaly of neutrophils

Bone disorders [LBR] Lethal HEM (Hydrops-Ectopic calcification-Moth-eaten) skeletal dysplasia Syndactyly Brachydactyly [short fingers/toes]

> STEM CELL dysfunction Epidemal stem cells [LAP2, LMNA] Erythroid stem cells [LAP2, LMNA] Ovarian germ cells in Drosophila [Otefin]

CENTRAL NERVOUS SYSTEM

CNS demyelination (adult-onset AD Leukodystrophy) [LMNB1 duplic/n] Cerebellar hypoplasia, cataracts, mental retardation [Nesprin-1/SYNE-1] Lissencephaly (AR cerebellar ataxia and atrophy) [Nesprin-1/SYNE-1]

"LAMINOPATHIES"

>15 human diseases/conditions caused by mutations in lamins or lamin-binding proteins

E.g., *LMNA* mutations can disrupt specific tissues (muscle, heart, fat, skin, bone, neurons), or cause *accelerated aging* (Hutchinson Gilford Progeria; atypical Werner syndrome)

Lamins are required for.

Nuclear SHAPE

MECHANICAL strength (molecular 'shock absorber')

Chromatin attachment to NE

Nuclear Pore Complex anchorage/spacing

DNA replication (!!)

mRNA transcription (!!)

Higher-order chromatin structure is regulated and dynamic

Chromosome 'territories'

Can infiltrate neighbors. No 'fences'!!

Certain pairs of chromosomes are consistently found as 'near neighbors' in specific tissues.

When a gene activates, its chromatin UNFOLDS to occupy a huge volume as diffusible proteins arrive to transcribe, splice and process the mRNA.

David Spector

PML bodies: transcriptional regulation affected by viral infection

Evidence for nuclear actin polymers

- FRAP experiments suggest ~20% of nuclear actin is in a polymeric state (McDonald et al. 2006)
- Inhibition of N-WASP-dependent actin polymerization reduces RNA Polymerase II-dependent transcription (Wu et al. 2006)
- Polymerizable actin and Nuclear Myosin 1c (nMyo1c) are . Symmetric acting and indicate MyoSin 1C (nMyo1c) are required for RNA Polymerase I-dependent transcription (Ye et al.2007)
- Movement of active genes from heterochromatic to ٠ euchromatic regions requires polymerizable actin and nMyo1c (Chuang et al. 2006; Dundr et al. 2007)
- Emerin, an inner nuclear membrane protein, caps F-actin in Vitro (Holaska et al. 2004)

