Fluorescence Imaging of Live Cells

Yu-li Wang

- 1. History of Modern Fluorescence Imaging
- 2. Basic Principles of Various Modes of Fluorescence Imaging
- 3. Future Development

Useful Web Sites

- http://probes.invitrogen.com/handbook (basic fluorescence and probes)
- http://www.microscopyu.com/articles/fluores cence (microscopy)
- http://www.olympusmicro.com/primer/techni ques/fluorescence/fluorhome.html (microscopy)
- http://www.chroma.com/resources/handbook
 .php (filters)
- http://www.clontech.com/support/brochures. asp (fluorescent proteins)

Books

- Imaging in Neuroscience and Development, A Laboratory Manual (R. Yuste, F. Lanni, A. Konnerth eds.) Cold Spring Harbor Lab Press, (2005).
- Live Cell Imaging, A Laboratory Manual (R.D. Goldman, D.L. Spector, eds) Cold Spring Harbor Lab Press, (2005).
- Methods in Enzymology Vol. 360-361, Biophotonics (Gerard Marriott and Ian Parker, eds) Academic Press, (2003).

Searching for the Simplest Model to Account for Diverse Forms of Cell Shape and Migration

Neuron (16.5 hours) Gary Banker Fibroblast (1 hour) Vic Small

Keratocyte (12 min) Kurt Anderson

Fluorescence Microscopy

- Started at the turn of the 20th century as one of the contrast generating methods
- Early applications used primarily histological stains, conceptually similar to bright field microscopy
- Noted for its introduced labels against a dark background, and the associated specificity and sensitivity
- Molecular targeting started with the introduction of fluorescently tagged antibodies by Coons in 1950, turning it from a morphological into a molecular tool

What is Fluorescence

Emission of photons as a molecule returns from singlet excitation state to ground state

Anatomy of Organic Fluorescent Probes

Immunofluorescence

Factors that Affect Fluorescence Microscopy

- **Photobleaching** fading of fluorescence, as a result of chemical reactions of the excited state. Typically involves triplet state and oxygen and irreversible.
- **Photodamage** creation of toxic molecules by excited fluorophores. Typically involves photobleaching and free radical generation.
- **Quenching** non-radiative processes that dissipate the energy of the excited state. Typically involves non-covalent molecular interactions and reversible.
- Autofluorescence fluorescence emitted by molecules other than the probes. Could be from co-enzymes, media, glass, immersion oil.
- **Background fluorescence** diffuse photons that may originate from autofluorescence or from out of focus probes.
- **Noise** statistical uncertainties associated with the detection of fluorescence. Typically appear as fine grains.

Bottlenecks of Early Fluorescence Optics

Optics – Dark field Illumination

High background, Limiting objective NA, oil immersion

Probes – Few

Bleaching, Limited reaction targets, Limited spectral ranges

Detectors – Photographic film Low sensitivity, Long exposure

Legacy (Diascopic) Design for Fluorescence Microscopy

Optical Design in Epi-Fluorescence Microscopy

Bottlenecks of Early Fluorescence Optics

Optics – Dark field Illumination

High background, Limiting objective NA, oil immersion Epi-Illuminator (physics)

Probes – FITC Bleaching, Limited reaction targets, Limited spectral ranges New bleaching-resistant dyes, sulfhydryl reagent, Indicator dyes, etc (chemistry)

Detectors – Photographic film

Low sensitivity, Long exposure, Tedious Intensified video cameras (engineering)

Fluorescent Probes of Calcium Ion

Fluorescent Analog Cytochemistry

- Protein Purification
- Fluorescent Labeling
 ↓
- In vitro characterization
- Microinjection
- Image recording

Assembly of cortical actin following fertilization of sea urchin eggs, 1979

Microinjection of IAF-actin and recording with tri-X film

Applications of Fluorescent Analog Cytochemistry Early Movies of Actin-Myosin Dynamics

Alpha-actinin in invadopodia of transformed NRK cells, 1987 Myosin II in lamella 3T3 fibroblasts, 1989

Beyond Simple Imaging Marking Structures with Laser Beam for Visualizing Transport

Wang, 1985

Injection of iatr-actin into IMR33 cells, detection with a Venus intensified video camera, recording with a film camera positioned in front of a TV monitor Small, 1981

Brave New World of Fluorescence Microscopy

Limitations of Fluorescent Analog Cytochemistry

- Efforts protein purification, labeling, characterization
- Skills microinjection
- Limitations dependence on exchange, inaccessibility to membrane structures, inside organelles, etc

Fourescent Proteins

Natural Fluorescent Proteins

GFP

Barrel of 11 antiparallel beta sheets 27kDa 30A in diameter 40A in length Fluorophore located in the middle (red), protected by the barrel

Formation of the Fluorophore Involving cyclization of Gly67 Tyr66 Ser65 by autocatalysis requiring oxygen

Imaging Beyond Simple Localization

Spatial

Detecting conformation and molecular interactions – FRET

• Temporal

Detecting random molecular movements – FCS, FRAP

• Spatial-Temporal

Detecting structural transport and assembly – FSM, STICS

• New Modalities

Traction forces

Fluorescence Resonance Energy Transfer (FRET)

Resonance Energy Transfer Jablonski Diagram

Donor-Acceptor Spectral Overlap Region

Rate Constant of FRET $K_T = (1/\tau_D) \cdot [R_0/r]^6$ $R_0 = 2.11 \times 10^{-2} \cdot [\kappa^2 \cdot J(\lambda) \cdot \eta^{-4} \cdot Q_D]^{1/6}$ J = spectral overlap integral $\kappa^2 = (\cos \theta_T - 3\cos \theta_D \cos \theta_A)^2 = (\sin \theta_D \sin \theta_A \cos \phi - 2\cos \theta_D \cos \theta_A)^2$ $Q_D = \text{donor QE}$ $\eta = \text{medium refractive index}$

Effects of FRET on the Emission Spectrum

wavelength / nm

[Chromeon 642-antiHSA] / [Chromeon 546-HSA]

FRET Biosensor for the Small GTPase Activity

J. Cell Sci. 117:1313 (2004)

Measuring Protein Mobility Fluorescence Recovery after Photobleaching (FRAP) and Fluorescence Loss in Photobleaching (FLIP)

Methods 37:154 (2005)

Fluorescence Correlation Spectroscopy for Measuring Protein Mobility and Association

Time

Fluorescent Speckle Microscopy

Dimer Pool

Dual-wavelength FSM of microtubules (green) and actin (red):

Microtubules are coupled to actin movements

32 x 48 um

38 min elapsed time

Biophys J. 75:2059-2069 (1998)

Applications of Photoactivated Fluorescence

Photoconversion of GFP – Fluorescence Induction

Photoconversion – Switching Color and Intensity

Photoconversion Spectral Profiles and Images of PS-CFP

Reversible Photoswitching of Dronpa Fluorescent Protein

Overcoming The Resolution Limit

Optical

- Confocal Optics Spinning disk, 1P, 2P
- TIRF Optics
- Computational
 - Deconvolution

- Combined Approaches
 - Air disk positioning, PALM/STORM
 - Structured Illumination Microscopy

Total Internal Reflection Fluorescence Microscopy

Illumination Intensity

$$I(z) = I(o)e^{-z/c}$$

Where $d = \lambda / 4 \pi [n(1)^2 \sin \theta^2 - n(2)^2]^{-1/2}$

Prism Configurations

High Numerical Aperture Objective TIRFM

Molecular Imaging with TIRF

Correlation

Mathematical Approach to Match Patterns

Intensity Array:	2468642
Template 1:	1234321
Template 2:	1122334

Score against Template 1 $2^{1} + 4^{2} + 6^{3} + 8^{4} + 6^{3} + 4^{2} + 2^{1} = 88$ Score against Template 2 $2^{1} + 4^{1} + 6^{2} + 8^{2} + 6^{3} + 4^{3} + 2^{4} = 72$ Higher score, better match

Correlation-Based Feature Detection

Super-resolution of Fiber Structures

2

4 2

Flux of Actin Filaments Toward the Equator

kymograph

Spatial Temporal Correlation Microscopy Detecting Structure Flow

Spatiotemporal Image Correlation Analysis of Sub-Equatorial Fluxes of Actin Filaments

Mian Zhou

Microscopy of Traction Forces

Bead displacement

Vectors of bead displacement

Traction Force Microscopy

Vectorial plot

Color rendering

Key Areas for Development

- Probes & Sensors "brighter" probes, new parameters
- Biological Context intravital imaging, physiological mimetics
- Informatics automation, high-throughput imaging, information extraction, modeling

Tangled Linear Polymers as Intracellular

Myosin II Dependent Cytoplasmic Forces

Max asp ratio = 7 (along cell axis) Max speed = 8.5×10^{-2} micron/sec Blebbistatin (myosin II inhibitor)

T. Iwasaki

Cell Migration in Collagen Gels Lagging Cell Body When Tracking Collagen Fibers

Cell Migration along Adhesive Strips Stable Front and Contractile Rear

Dynamics of Myosin II during Early Cytokinesis

Temporal Differential Microscopy

Detecting Normalized Rate of Intensity Changes

Discrete, Transient Domains of Myosin Assembly

Metaphase

Early Cytokinesis

TIRF

TDM

Suppression of Myosin Disassembly along the Equator

Separating Information from Noise

Original

Noise

Signal

From "Seeing" to "Understanding"

- What Biologists Can See with Light Microscopy -
 - Spatial and temporal details of chemical and physical properties encoded by optical sensors
- What Biologists Need for Understanding -
 - The rules of interactions that lead to biological functions
- Images Represent Manifestations or Consequences of Functions, Not the Function Itself
- Images Represent Local Information Presented in Tandem, Functions Often Require the Integration Across Space and Time

Understanding by Modeling

Modeling Microscope Images

Based on Biological Mechanisms and Instrumental Characteristics

Experimental images of microtubules in yeast spindle

Simulated images

Sprague et al (2003) Biophys. J. 84:3529

Observed distribution of microtubules Predicted distribution of microtubules Proposed PSF and dynamics of camera microtubules noise

Fluorescence Microscopy Timeline

Concluding Remarks

Learning from the Recent History of Light Microscopy

- Breakthroughs often come from merging physical, biological, chemical, and engineering approaches.
- Much untapped potential exists in other disciplines, waiting to be imported for fluorescence microscopy.
- Simple schemes have the greatest potential for the widest, fastest dissemination and impact.