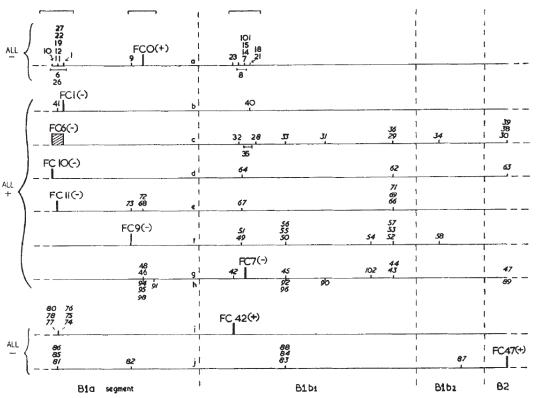
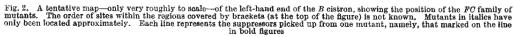
BME 42-620 Engineering Molecular Cell Biology

Lecture 22:

Cell Signaling (III) Cell Cycle (I)

Chapter 15


Comments on Reading Assignment 5 (I)


GENERAL NATURE OF THE GENETIC CODE FOR PROTEINS

By Dr. F. H. C. CRICK, F.R.S., LESLIE BARNETT, Dr. S. BRENNER and Dr. R. J. WATTS-TOBIN Medical Research Council Unit for Molecular Biology, Cavendish Laboratory, Cambridge

"I assume that this means the FC0 is the original mutation that causes the frameshift and there is a second mutation that occurs at 18 different places that "revert" this frameshift (that is why they are called suppressors). But the third paragraph in page 2 said that "in all cases the suppressor was a non-leaky r. That is, it gave an r plague on B and would not grow on K. This is the phenotype shown by a complete deletion." If these 18 has already reverted the effect of mutation on FC0, then why are they still showing up as non-leaky r?"

Leaky mutation: growth on K, somewhat different plaque-type on B.

Comments on Reading Assignment 5 (II)

More over, our symbols + and – must not be taken to mean literally the addition or subtraction of a single base.

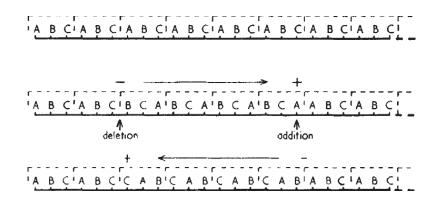


Table 1. DOUBLE MUTANTS HAVING THE r PHENOTYPE

- With -	+ With $+$
FC (1 + 21) FC (23 + 21) FC (1 + 23) FC (1 + 9)	$\begin{array}{cccc} FC \left(0 + 58 \right) & FC \left(40 + 57 \right) \\ FC \left(0 + 38 \right) & FC \left(40 + 58 \right) \\ FC \left(0 + 40 \right) & FC \left(40 + 55 \right) \\ FC \left(0 + 55 \right) & FC \left(40 + 54 \right) \\ FC \left(0 + 54 \right) & FC \left(40 + 38 \right) \end{array}$

Table 3. TRIPLE MUTANTS HAVING A WILD OR PSEUDO-WILD PHENO-

TYPE FC (0 + 40 + 38) FC (0 + 40 + 58) FC (0 + 40 + 57) FC (0 + 40 + 54) FC (0 + 40 + 55) FC (1 + 21 + 23)

Comments on Reading Assignment 5 (III)

"Of course, now that we know the answer, it all seems so completely obvious that no one nowadays remembers just how puzzling the problem seemed then. If by chance you do not know the answer, I ask you to pause a moment and reflect on what the answer might be. There is no need, at this stage, to bother about the details of the chemistry. It is the principle of the idea that matters.

The problem was not made easier by the fact that many of the properties of proteins and genes just outlined were not known for certain. <u>All of them plausible and most of them seemed very probable</u> but, as in most problems near the frontiers of research, there were always nagging doubts that one or more of these assumptions might be dangerously misleading. <u>In research the front line is almost always in a fog.</u>"

- Francis Crick, "What mad pursuit"

Outline

- Second messengers
- Overview of cell cycle
- Different phases of cell cycle
- Overview of checkpoints
- Cyclin and cyclin-dependent kinases

• Second messengers

- Overview of cell cycle
- Different phases of cell cycle
- Overview of checkpoints
- Cyclin and cyclin-dependent kinases

Overview of Cell Signaling

extracellular signal molecule receptor protein Cascade of signaling events plasma membrane CYTOSOL ↓Receptors PRIMARY TRANSDUCTION ↓Signal transducers SCAFFOLD ↓Effector proteins RELAY **TRANSDUCE AND** AMPLIFY Relay, integration, and distribution of signals require transducers. INTEGRATE SPREAD Signaling pathways regulate nearly ANCHOR all cellular functions. MODULATE nuclear envelope NUCLEUS

activated effector protein

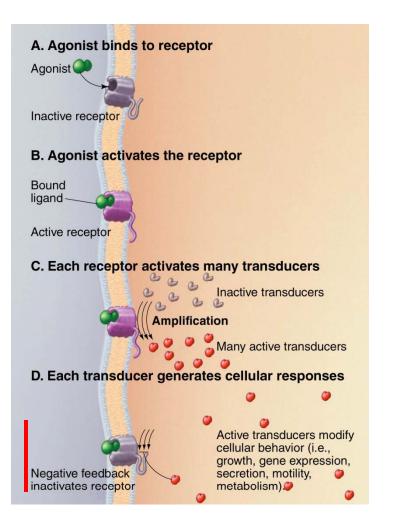
signal response element

DNA

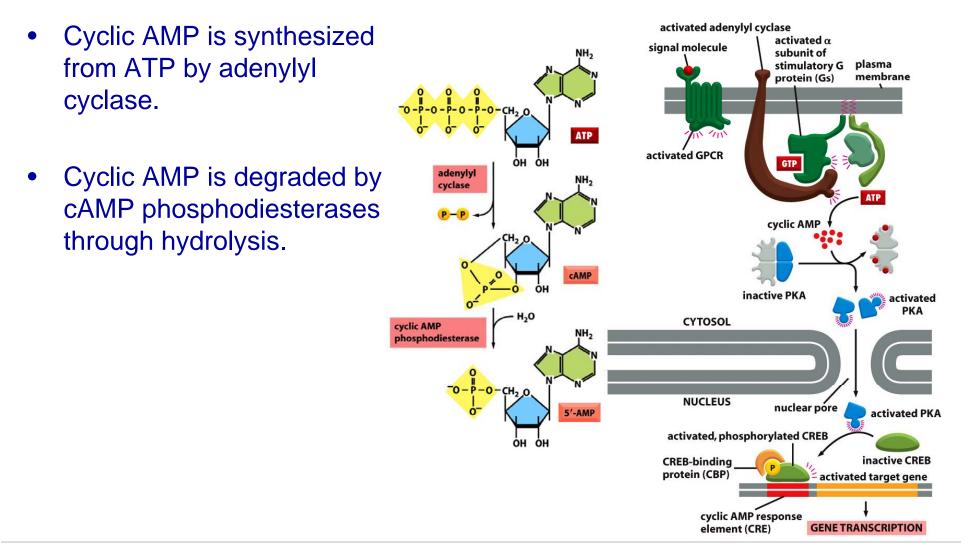
EFFECTOR PROTEIN

ACTIVATION

activated gene

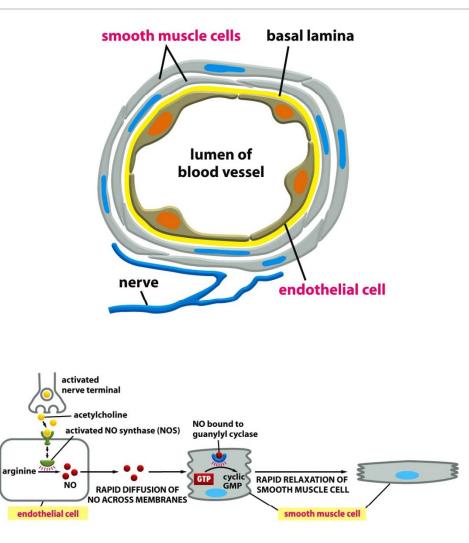

GENE TRANSCRIPTION

Transducers in Signaling


- Signaling proteins
 - Kinases Phosphatases GTPases Adapters

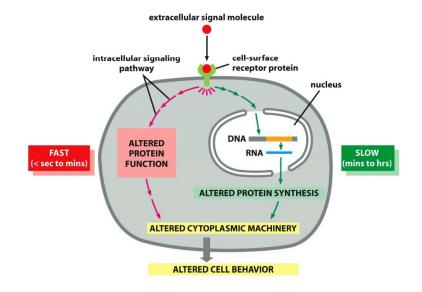
Second messengers

cAMP, cGMP Lipids Calcium NO (nitrogen monoxide)

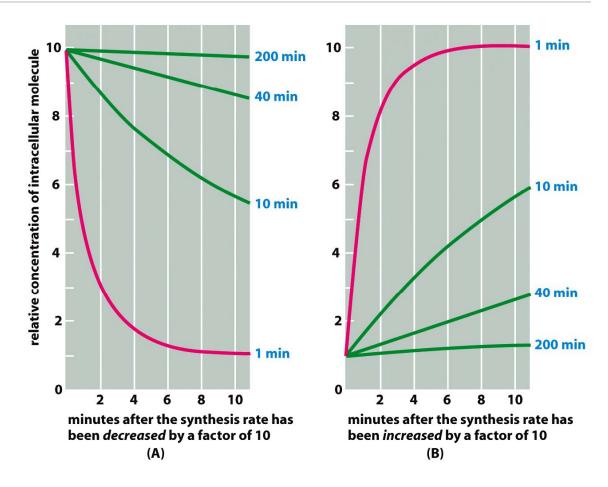


Example: Regulation of cAMP by G Proteins

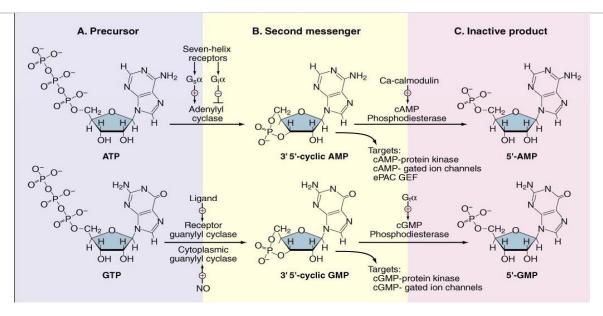
Intracellular Receptor: Guanylyl Cyclase Receptors


- Soluble guanylyl cyclase is a mammalian NO/CO sensor.
- NO signaling is critical to many physiological processes involving cardiovascular and neuronal systems.
- Related drugs work by blocking the breakdown of cGMP.

Overview of Second Messengers (I)


Main types of second messengers

- Cyclic nucleotides: cAMP, cGMP
- Calcium
- Lipids
- Nitric oxide
- Most second messengers are small molecules.
- Information encoded by local concentrations.
- Advantages
 - Range (e.g. broadcasting)
 - Response speed (up to ms)
- Second messengers are interrelated.



Overview of Second Messengers (II)

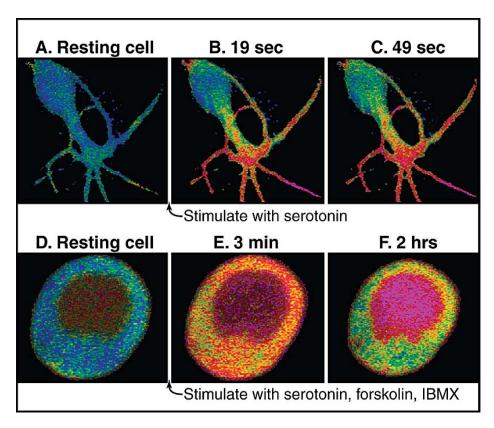
- Production (source)
- Localization
- Target
- Degradation (sink)

Cyclic Nucleotide (I)

• Producer:

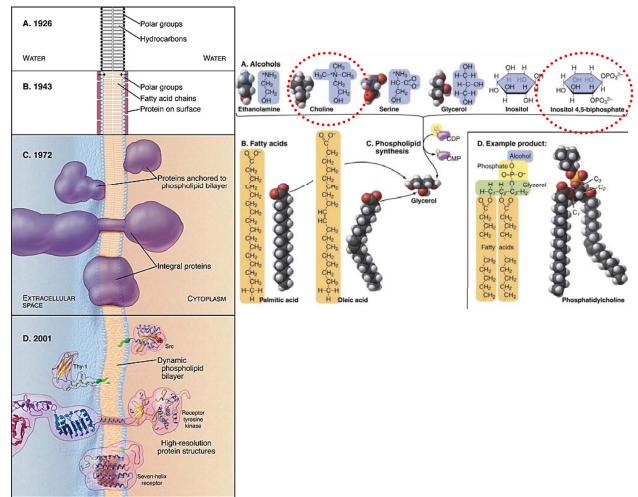
 $cAMP \rightarrow adenylyl cyclase$ $cGMP \rightarrow guanylyl cyclase$

• Degrader:

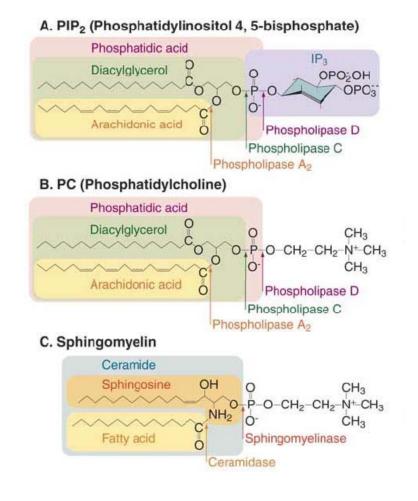

cAMP phosphodiesterase cGMP phospoodiesterase

cAMP (I)

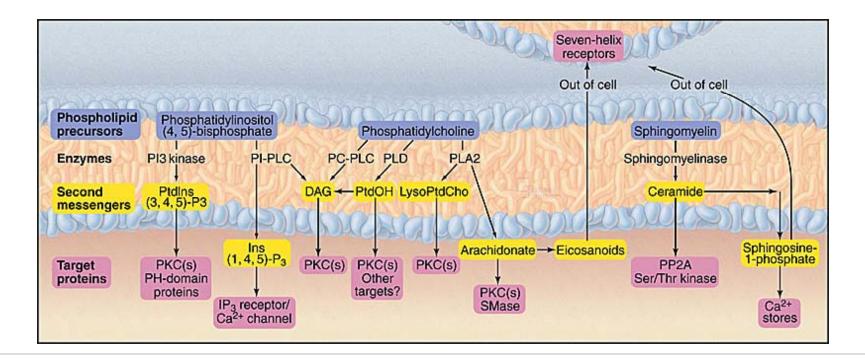
- Diffuse rapidly through cytoplasm as in free solution
- May be modulated locally (through upstream G-proteins)
- Concentration in resting cell ~10⁻⁸M
- Can amplify signal by 100-fold on time scale of seconds.
- Targets:
 - kinase
 - cyclic nucleotide-gated ion channels
 - Exchange factors for small GTPases (Rap1, Rap2)


cAMP (II)

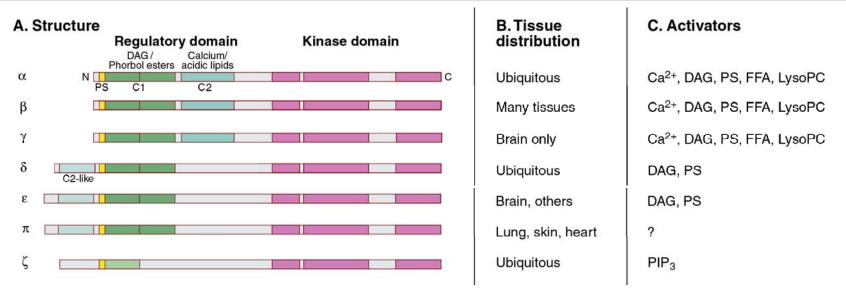
- Serotonin is an activator of adenylyl cyclase.
- Forskolin is another activator of adenylyl cyclase.
- IBMX is an inhibitor of cAMP phosphodiesterase.
- Signal→ fluorescently labeled PKA (protein kinase A)


Cell Membrane

- There are many types of membrane lipids.
- Phosphoglycerides are the main constituents of membrane bilayers.
- There are more than 100 major phosphoglycerides based on different fatty acids and head groups

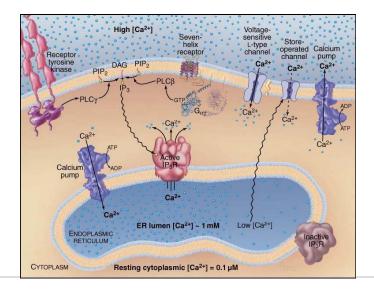

Lipid-Derived Second Messengers (I)

- Three classes of enzymes produce most lipid-derived second messengers.
 - Phospholipases
 - Lipid kinases
 - Lipid phosphotases
- Localization: membrane, cytoplasm, extracellular environment
- A great variety of membrane lipids are produced as chemical signals.



Targets of Lipid Second Messengers (II)

Targets PKC GPCR Ca²⁺ stores PH-domains, IP₃ receptor


Protein kinase C (PKC)

- PKC is an important substrate to lipid second messengers.
- Activated PKCs are involved in regulation of many cellular functions.
- There are many other lipid-derived signaling pathways associated with PC, PIP2 & spingomyelin.

Calcium Ion (I)

- Calcium ion is a versatile second messenger that regulates many cellular processes
- Ca²⁺ levels are controlled by release and removal from the cytoplasm.
 - Release through channels in ER, mitochondria, & cell membrane
 - Removal from cytoplasm through ATP-driven Ca²⁺ pumps

Calcium Ion (II)

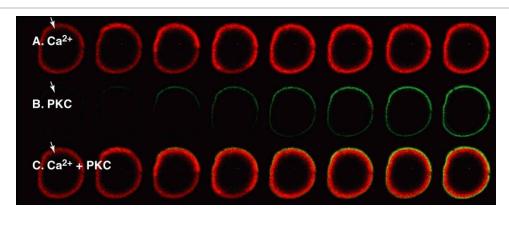
- ATP driven Ca²⁺ pumps maintain a 10,000-fold concentration gradient across membranes.
- Resting level: 0.1uM
- Calcium ion enters cytoplasm in sparks through channels.
- Ca²⁺ signals work locally.

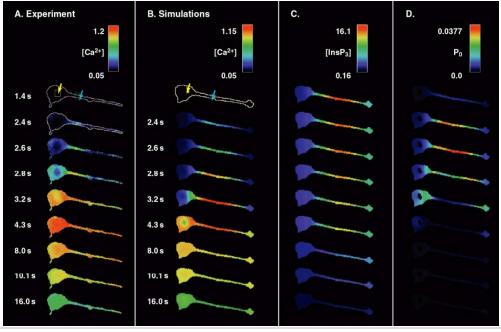
- Diffusion of Ca²⁺ is very slow due to sequestering and many binding partners (300 uM).

- Only 1% is allow to freely diffuse.

Calcium Ion (III)

- Range of diffusion
 - Without calmodulin: $0.1\mu m$; half-time for free ion: $30\mu s$
 - With calmodulin: 5 μm
- Removal of calcium ion by pumps
 - Pumps: transfer two ions per ATP hydrolysis
 - Activated until the cytoplasmic Ca²⁺ level falls to 0.1uM
- Removal of calcium ion by sequestering
 - Calsequestrin (mostly in muscle)
 - Calreticulin (ER)
- Intracellular calcium stores can be refilled using extracelluar Ca²⁺ (through the TRP channels)


Calcium Ion Channels


- Voltage-gated channels
- Ligand-gated channels
 - IP₃ receptors (generic physiological)
 - Ryanodine receptors (ER; muscle-related)

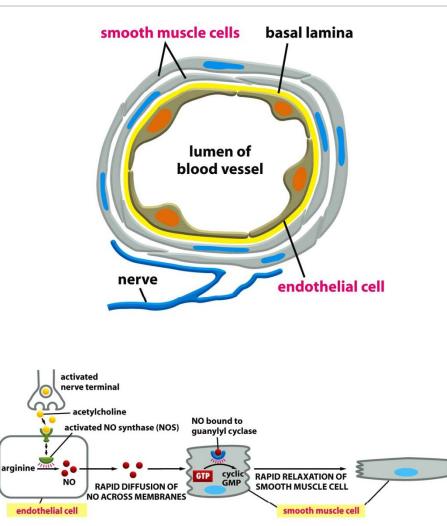
CA ²⁺ -RELEASE CHANNELS					
Туре	Distribution	Control	Features		
Plasma Membrane Ca2+ Char	nnels				
ATP-activated channel	Smooth muscle	Extracellular ATP			
cAMP-activated channel	Sperm	Cytoplasmic cAMP			
L-type Ca ²⁺ channel	Skeletal and cardiac muscle, brain, other nonmuscle cells	Voltage	Excitation-contraction coupling, defective in muscular dysgenesis. High threshold, dihydropyridine (DHP)-sensitive, regulated by PKA		
N-type Ca ²⁺ -channel	Neurons, endocrine cells	Voltage	Neurotransmitter release, modulated by G-proteins. High threshold, conotoxin- sensitive		
P-type Ca ²⁺ -channel	Purkinje neurons	Voltage	Insensitive to dihydropyridine and conotoxin		
T-type Ca ²⁺ -channel		Voltage	Low threshold		
Endoplasmic Reticulum Ca ²⁴	Channels				
IP ₃ receptors	Most cells including brain and smooth muscle	IP ₃ , Ca ²⁺	Heparin-sensitive		
Type I ryanodine receptor	Skeletal muscle	DHP-receptor, Ca2+	Ca ²⁺ release stimulates contraction		
Type II ryanodine receptor	Cardiac muscle, other cells	Ca ²⁺ , cADP-ribose	Ca ²⁺ release stimulates contraction		
Type III ryanodine receptor	Smooth muscle, other cells	Ca ²⁺ , cADP-ribose	Ca2+ release stimulates contraction		

Calcium Dynamics

- Calcium dynamics is regulated in space and time
- Stimulation
 Upper panel: a needle prick
 Lower panel: bradykinin

Calcium Ion Targets

- Membrane proteins
- Enzymes
- Cytoskeletal proteins
- Calcium-binding proteins

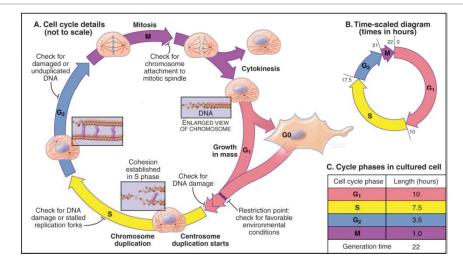

Protein	Binding Site	Function	
First-Order Proteins That Bind Ca ²⁺ I	Directly		
Membrane Proteins			
Annexins	Novel	Promote membrane interactions	
Ca ²⁺ -activated CI ⁻ channels	Novel	Participate in secretion	
Ca ²⁺ -activated K ⁺ channels	Novel	Control membrane excitability	
IP ₃ receptor	Novel	Ca2+-release channel; activated and inhibited by Ca2+	
Ryanodine receptor	Novel	Ca2+-release channel, activated and inhibited by Ca2+	
Synaptotagmin	Novel	A synaptic vesicle Ca ²⁺ sensor	
Enzymes			
Calmodulin-domain protein kinases	*EF hand	Plant protein kinases	
Calpain	EF hand	Ca ²⁺ -dependent protease	
Protein kinase C, some isozymes	C2 domain	Multifunctional protein kinases activated by Ca2+	
Cytoskeletal Proteins			
α-Actinin (some isoforms)	EF hand	Actin filament cross-linking protein	
Centrin/caltractin	EF hand	Ca ²⁺ -sensitive contractile fibers	
Gelsolin, villin	Novel	Actin filament severing and capping proteins	
Molluscan myosin light chains	EF hand	Regulate muscle contraction; activated by Ca2+	
Troponin C	EF hand	Ca2+-activated regulator striated muscle contraction	
Calcium-Binding Proteins			
Calmodulin	EF hand	Ca2+-activated regulator of many proteins	
Calbindin-D28K	EF hand	Cytoplasmic Ca ²⁺ buffer	
Calretinin	EF hand	Activates guanylyl cyclase	
Parvalbumin	EF hand	Cytoplasmic Ca ²⁺ buffer	
\$100 proteins (18 human isoforms)	EF hand	Diverse regulatory functions; some isoforms may be secrete	
S100 calbindin-D9K	EF hand	Cytoplasmic Ca ²⁺ buffer	
Recoverin	EF hand	Regulates visual phototransduction	
Second-Order Proteins Activated by	Ca ²⁺ -Calmodulin		
Membrane Proteins			
Adenylyl cyclase (some isoforms)		Produces cAMP	
Ca ²⁺ -dependent Na ⁺ channels		Na ⁺ currents	
CGMP-gated cation channels		Phototransduction	
Plasma membrane Ca ²⁺ -ATPase pumps	Clears cytoplasm of Ca2+		
Enzymes			
Calcineurin		Protein phosphatase 2B	
CaM kinase (several isozymes)		Multifunctional protein kinase	
AMP phosphodiesterase		Degrades cAMP	
P3 kinase		Phosphorylates IP ₃	
Myosin light chain kinase		Activates smooth muscle and cytoplasmic myosin	
NAD kinase		Phosphorylates NAD	
Nitric oxide synthetase		Makes nitric oxide	
Phosphorylase kinase		Phosphorylates phosphorylase	
Cytoskeletal Proteins			
MARCKS		Actin filament cross-linking protein	

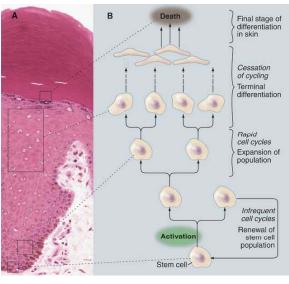
Nitric Oxide

- NO diffuses rapidly through membranes.
- NO reacts with oxygen and has a half-life of only a few seconds → must be produced continuously.
- Produced by nitric oxide synthases (NOS).
- Inactivated by binding to hemoglobin and then excreted.
- Main target: guanylyl cyclase (cGMP producer)
- Main physiological functions
 - Killing pathogens
 - Regulating blood flow and blood pressure

Nitric Oxide Activates Guanylyl Cyclase

- Soluble guanylyl cyclase is a mammalian NO/CO sensor.
- NO signaling is critical to many physiological processes involving cardiovascular and neuronal systems.
- Related drugs work by blocking the breakdown of cGMP.



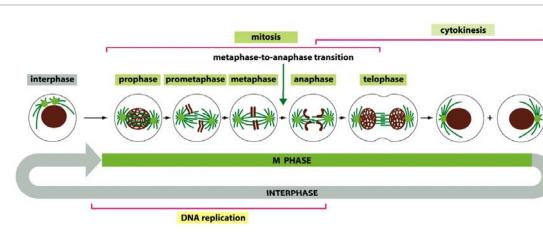

Second messengers

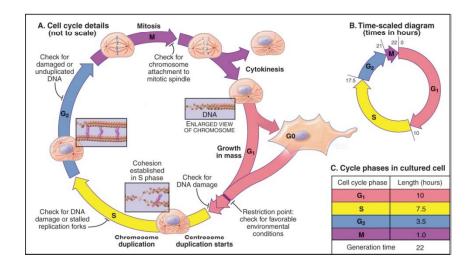
- Overview of cell cycle
- Different phases of cell cycle
- Overview of checkpoints
- Cyclin and cyclin-dependent kinases

Overview of Cell Cycle (I)

- The cell cycle is a series of events that leads to the replication and division of a cell.
- Two daughter cells inherit the same genetic information from the mother cell.
- Cell cycle must be tightly regulated.
- Basic mechanisms of cell cycle regulation are well conserved in eukaryotes.

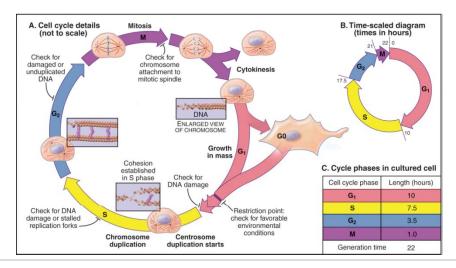
Overview of Cell Cycle (II)


- Cell cycle is controlled by a series of biochemical switches (checkpoints).
- Additional layer of regulation ensures fidelity of cell division by responding to internal and external signals.
- In addition to replicating their genome, most cells replicate their other organelles and macromolecules.
- Growth in cell mass must be regulated too.

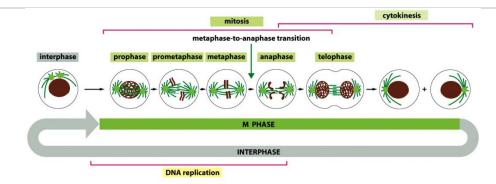

- Second messengers
- Overview of cell cycle
- Different phases of cell cycle
- Overview of checkpoints
- Cyclin and cyclin-dependent kinases

Phases of Cell Cycle (I)

- G₁ phase
 - Grow in cell mass
 - Genes required to activate cell cycle are turned off
 - Can be delayed
 - Can exit to G0



- G₀ and growth control
 - Cells no longer divide
 - Can exit from G₀
 - Cells are active in G₀



Phases of Cell Cycle (II)

- S phase
 - Centrosome replication
 - DNA replication
 - Sister chromatids are connected by cohesin
- G₂ phase
 - To check for unreplicated or damaged DNA
 - To prepare for mitosis (e.g. accumulation of enzymes)

Phases of Cell Cycle (III)

• M phase

 \rightarrow prophase:

condensation of chromosomes; formation of two poles

 \rightarrow prometaphase

nuclear envelope breakdown; bipolar attachment at kinetochores

 \rightarrow metaphase

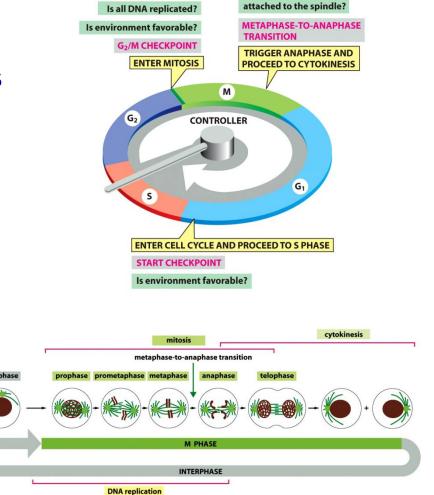
chromosomes aligned in the midzone

 \rightarrow anaphase

sister chromatids separated; moving to the two poles

 \rightarrow telophase

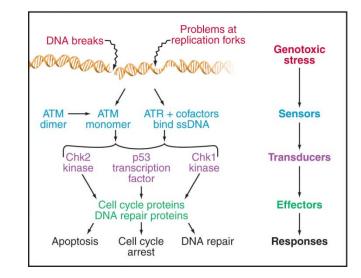
reformation of nuclear envelopes


 \rightarrow cytokinesis

formation of contractile ring; separation of two daughter cells

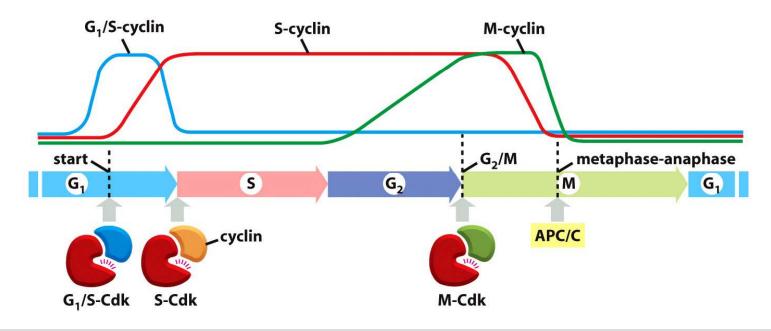
- Second messengers
- Overview of cell cycle
- Different phases of cell cycle
- Overview of checkpoints
- Cyclin and cyclin-dependent kinases

Checkpoints (I)


- Check points are biochemically implemented switches that control transition between cell-cycle stages
- Restriction point in G1 phase
- DNA damage checkpoint in G1, S, G2 phase
- DNA replication checkpoint
- Spindle assembly checkpoint

Are all chromosomes

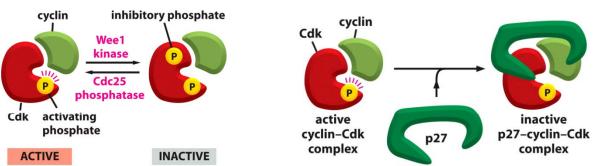
Checkpoints (II)


- DNA damage check point
- Sensing of DNA damage: ATM & ATR
- ATM & ATR activate Chk1& Chk2 and stabilizes p53.
- Cell-cycle progression is halted if DNA damage is detected.
- Cells can enter into several states
 - Cell death
 - Cell cycle arrest
 - Successful DNA repair;
 - Resume cell cycle

- Second messengers
- Overview of cell cycle
- Different phases of cell cycle
- Overview of checkpoints
- Cyclin and cyclin-dependent kinases

Cyclin and Cyclin-Dependent Kinase (I)

- Transition between different stages of the cell cycle are controlled by a network of kinases and phosphatases.
- Cyclin-dependent kinases play critical roles in regulating cell cycle.



Cyclin and Cyclin-Dependent Kinase (II)

- <u>CAK</u> (cdk-activating kinase) actives cyclin-CDK complexes.
- Activated cyclin-CDK complexes can be inhibited by Cdk inhibitor proteins (<u>CKI</u>) or inhibitory phosphorylation.
- ATP Cdk (A) INACTIVE (B) PARTLY ACTIVE (C) FULLY ACTIVE

Cdk-activating kinase (CAK)

• Redundant mechanisms used to ensure robustness and fidelity of cell-cycle control.

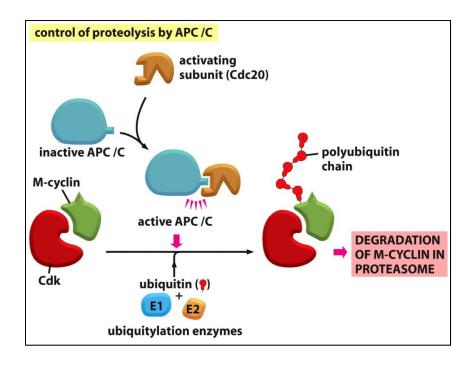
cyclin

Cyclin and Cyclin-Dependent Kinase (III)

Table 17–1 The Major Cyclins and Cdks of Vertebrates and Budding Yeast

CYCLIN-CDK	VERTEBRATES		BUDDING YEAST	
COMPLEX	CYCLIN	CDK PARTNER	CYCLIN	CDK PARTNER
G ₁ -Cdk	cyclin D*	Cdk4, Cdk6	Cln3	Cdk1**
G ₁ /S-Cdk	cyclin E	Cdk2	Cln1, 2	Cdk1
S-Cdk	cyclin A	Cdk2, Cdk1**	Clb5, 6	Cdk1
M-Cdk	cyclin B	Cdk1	Clb1, 2, 3, 4	Cdk1

* There are three D cyclins in mammals (cyclins D1, D2, and D3).


** The original name of Cdk1 was Cdc2 in both vertebrates and fission yeast, and Cdc28 in budding yeast.

Protein Degradation in Cell Cycle (I)

- Protein degradation is a critical cell cycle regulatory mechanism.
- Exit from mitosis requires CDK inactivation
- This is achieved by degradation of cyclins and securin (regulator of sister chromatid separation).
- Destruction of cyclins inactivate CDKs.
- Degradation of cyclin is performed in proteasome and requires ubiquitin enzymes (E1, E2, E3).

Protein Degradation in Cell Cycle (II)

- Key regulator of cyclin degradation is APC/C (anaphase promoting complex/cyclosome).
- Two forms of APC/C
 APC/C^{Cdc20}
 APC/C^{Cdh1}
- APC/C^{Cdc20} is responsible for triggering metaphaseanaphase transition.

Summary of Cell Cycle Regulatory Proteins

GENERAL NAME	FUNCTIONS AND COMMENTS	
Protein kinases and protein phosphatases that modify Cdks		
Cdk-activating kinase (CAK)	phosphorylates an activating site in Cdks	
Wee1 kinase	phosphorylates inhibitory sites in Cdks; primarily involved in suppressing Cdk1 activity before mitosis	
Cdc25 phosphatase	removes inhibitory phosphates from Cdks; three family members (Cdc25A, B, C) in mammals; primarily involved in controlling Cdk1 activation at the onset of mitosis	
Cdk inhibitor proteins (CKIs)		
Sic1 (budding yeast)	suppresses Cdk1 activity in G ₁ ; phosphorylation by Cdk1 at the end of G ₁ triggers its destruction	
p27 (mammals)	suppresses G ₁ /S-Cdk and S-Cdk activities in G ₁ ; helps cells withdraw from cell cycle when they terminally differentiate; phosphorylation by Cdk2 triggers its ubiquitylation by SCF	
p21 (mammals)	suppresses G ₁ /S-Cdk and S-Cdk activities following DNA damage	
p16 (mammals)	suppresses G1-Cdk activity in G1; frequently inactivated in cancer	
Ubiquitin ligases and their acti	vators	
APC/C	catalyzes ubiquitylation of regulatory proteins involved primarily in exit from mitosis, including securin and S- and M-cyclins; regulated by association with activating subunits	
Cdc20	APC/C-activating subunit in all cells; triggers initial activation of APC/C at metaphase-to-anaphase transition; stimulated by M-Cdk activity	
Cdh1	APC/C-activating subunit that maintains APC/C activity after anaphase and throughout $\rm G_1$; inhibited by Cdk activity	
SCF	catalyzes ubiquitylation of regulatory proteins involved in G ₁ control, including some CKIs (Sic1 in budding yeast, p27 in mammals); phosphorylation of target protein usually required for this activity	

Table 17–2 Summary of the Major Cell-Cycle Regulatory Proteins

Questions?