BME 42-620 Engineering Molecular Cell Biology

Lecture 20:

Control of Gene Expression Cell Signaling

Chapters 7, & 15

Outline

- Overview of gene expression control
- Noise in gene expression
- Overview of cell signaling
- Classification of related proteins
- G-protein coupled receptors

• Overview of gene expression control

- Noise in gene expression
- Overview of cell signaling
- Classification of related proteins
- G-protein coupled receptors

Differential Gene Expression in Different Cells

- The DNA of a cell encodes all the RNA and proteins required for its construction.
- Different cell types of a multicellular organism contain the same DNA.
- The expression of the same DNA differs dramatically in different cell types.

Same DNA in Different Cell of A Multicellular Organism

Control of Gene Expression

- Different mRNA levels of 1800 genes in 142 different human tumor cell lines.
- Different proteins expressed in human brain and liver.
- Different levels of same proteins in human brain and liver.

Internal Signals Change Gene Expression

External Signals Can Change Gene Expression

 Mesenchymal stem cells differentiate into different cell types under different substrate stiffness.

Engler et al, *Cell*, 126:677, 2006.

Regulation of Gene Expression at Different Levels

- Gene expression is regulated at different levels.
- For most genes, transcriptional control is the most important.

Traditional View of Eukaryotic Gene Expression

- Gene expression consists of multiple steps.
- Different steps are relatively independent of each other.

Orphanides & Reinberg, Cell, 108:439, 2002.

A Contemporary View of Gene Expression

- Gene expression is a continuous process that can be divided into different stages.
- Different stages are physically and functionally connected.

Orphanides & Reinberg, Cell, 108:439, 2002.

Example I : Gene Expression Regulation by microRNA

One type of short noncoding RNA
 → microRNA

 \rightarrow 22 nucleotides on average

 It is estimated that humans may express 1000 microRNA.
 → Regulates 1/3 of human protein-encoding genes

Example II : RNA Interference

double-stranded RNA Often used as a defense mechanism again foreign RNA siRNAs Argonaute and Argonaute and other **RISC** proteins other **RITS** proteins Have been developed into a ۲ powerful approach to RISC RITS silence genes. PATHWAY NOW FOLLOWS ONE OF THOSE SHOWN IN Figure 7–112 **RNA** polymerase **HISTONE METHYLATION** DNA METHYLATION

TRANSCRIPTIONAL REPRESSION

Maintaining Differentiation through Epigenetic Inheritance

• Overview of gene expression control

- Noise in gene expression
- Overview of cell signaling
- Classification of related proteins
- G-protein coupled receptors

Regulation of Gene Expression at Different Levels

- Gene expression is regulated at different levels.
- For most genes, transcriptional control is the most important.

Quantitative Analysis and Modeling of Gene Expression

- Different classes of genes are regulated at different stages by different regulation mechanisms.
- Strategy I: Using simplified models:

- bacterial cells provide convenience of manipulation but lacks advanced regulatory mechanisms of higher eukaryotic cells.

- Strategy II: Identification and analysis of modules.
- Strategy III: Synthetic approach.

Noise in Gene Expression

- Identical twin humans and animal clones differ in appearance and behavior.
- Cells with the same genes, the same environment display variations in form and behavior due to the stochastic nature of biochemical reactions.

Raser & O'Shea, Science, 309:2010, 2005.

References

- Raser JM, O'Shea EK, <u>Noise in gene expression: origin, consequences,</u> and control, *Science*. 2005, 309:2010-2013.
- Vilar JM, Guet CC, Leibler S, <u>Modeling network dynamics: the lac operon</u>, <u>as case study</u>, *J. Cell Biology*, 2003. 161:471-476.
- Uri Alon, <u>Network motifs: theory and experimental approaches</u>, *Nature Reviews Genetics*. 2007, 8, 450-461.
- <u>http://www.elowitz.caltech.edu/index.html</u>
- <u>http://www.weizmann.ac.il/mcb/UriAlon/</u>

- Overview of gene expression control
- Noise in gene expression
- Overview of cell signaling
- Classification of related proteins
- G-protein coupled receptors

Overview of Cell Signaling

Sources of extracellular signal

- Non-cellular environment
- Cellular environment (cell-cell communication)
- Hundreds of types of signals
- Cells signaling
 - Stimulus sensing; communication
 - Information processing; decision making
- ↓Receptors
 ↓Signaling proteins
 ↓Effector proteins
- Signaling pathways regulate nearly all cellular functions.

Alberts MBoC 5e

Membrane & Intracellular Receptors

۲

۲

۲

CELL-SURFACE RECEPTORS Receptors bind signaling plasma membrane molecules (ligands) cell-surface receptor protein Receptors are highly sensitive and specific. hydrophilic signal - Typical signal molecule target cell molecule concentration <10⁻⁸ M - More than 1500 human genes **INTRACELLULAR RECEPTORS** encode receptors small hydrophobic signal molecule Most receptors are at the cell target cell carrier protein surface. Some receptors are intracellular nucleus (e.g. light, gas receptors). intracellular receptor protein Alberts *MBoC* 5e

General Principles of Signaling (I)

- Four forms of intercellular signaling
- Paracrine signaling acts locally over different types of cells.
- Autocrine signaling acts locally over the same types of cells including themselves.
- Endocrine signaling acts over long distance.

Alberts MBoC 5e

General Principles of Signaling (II)

- Many signaling proteins act as molecular switches
- Two ways to activate/deactivate signaling proteins
- Human genomes encodes ~520 kinases and ~150 phosphatases
- Two main types of kinases
 - tyrosine kinase
 - serine/threonine kinase
- Two types of GTP-binding proteins
 - Trimeric G proteins
 - Monomeric GTPases

General Principles of Signaling (III)

Alberts MBoC 5e

General Principles of Signaling (IV)

- A scaffold brings multiple signaling proteins together for faster and more efficient interactions.
- Signaling proteins may be anchored to a specific cellular structure.
- Activities of signaling proteins may be modulated by other signaling proteins.

Specific Reponses of Cells to Signaling

- A cell in a multicellular organism may be exposed to hundreds of signals.
- Different types of cells respond differently to the same type of signals.
- A major challenge is to understand how the cells process such information and make decisions.

Feedback Loops in Signaling Networks

- Two types of feedback loops
 - Positive feedback
 - Negative feedback
- Positive feedback loop
 Bistability
- Negative feedback loop
 Robustness to noise

Adaptation of Sensitivity to Signaling

• Cells can adapt to external stimuli through sensitivity adjustment.

- Overview of gene expression control
- Noise in gene expression
- Overview of cell signaling
- Classification of related proteins
- G-protein coupled receptors

Membrane Receptors

- Most extracellular signal molecules bind to specific membrane receptors.
- Three largest classes of receptors, defining three transduction mechanisms.
- Two common strategies used to transfer signals
 - conformation changes
 - clustering

Intracellular Signaling Proteins & Second Messengers

Signaling Proteins

- Many signaling proteins act as molecular switches
- Two ways to activate/deactivate signaling proteins
- Human genomes encodes ~520 kinases and ~150 phosphatases
- Two main types of kinases
 - tyrosine kinase
 - serine/threonine kinase
- Two types of GTP-binding proteins
 - Trimeric G proteins
 - Monomeric GTPases

- Overview of gene expression control
- Noise in gene expression
- Overview of cell signaling
- Classification of related proteins
- G-protein coupled receptors

G-Protein Coupled Receptors (I)

- Signal molecules of GPCR include
 - photons
 - molecules of taste and smell
 - hormones, neurotransmitters, ...
 - proteins, small peptides, etc...

• Function

- Nearly all human senses: sight, smell, taste
 - Behavior and mood regulation
- Regulation of immune system and inflammation
 - Nervous system regulation
- Half of known drugs work through GPCR directly or indirectly

Different Trimeric G-Protein Families

Table 15–3 Four Major Families of Trimeric G Proteins*

FAMILY	SOME FAMILY MEMBERS	SUBUNITS THAT MEDIATE ACTION	SOME FUNCTIONS
I	G	α	activates adenylyl cyclase; activates Ca ²⁺ channels
	Golf	α	activates adenylyl cyclase in olfactory sensory neurons
П	Gi	α	inhibits adenylyl cyclase
		βγ	activates K ⁺ channels
	Go	βγ	activates K ⁺ channels; inactivates Ca ²⁺ channels
		α and βγ	activates phospholipase C-β
	G _t (transducin)	α	activates cyclic GMP phosphodiesterase in vertebrate rod photoreceptors
Ш	Ga	α	activates phospholipase C-β
IV	G _{12/13}	α	activates Rho family monomeric GTPases (via Rho-GEF) to regulate the actin cytoskeleton

*Families are determined by amino acid sequence relatedness of the α subunits. Only selected examples are included. About 20 α subunits and at least 6 β subunits and 11 γ subunits have been described in humans.

Example: Regulation of cAMP by G Proteins

Challenges in Analyzing Signaling Pathways

- Hundreds of signaling pathways.
- Pathways frequently branch and converge.
- Positive and negative feedback loops are common.
- Outcomes of signaling pathways can be spatial and temporal dependent.
- Analysis typically uses graph models.

Human cancer pathways

References

- J. Hancock, Cell Signaling, 3rd ed., Oxford University Press, 2010.
- F. Marks et al, Cell Signal Processing, Garland Science, 2008.

Questions?