Lecture 10:
The Cytoskeleton (II): Microtubule & Intermediate Filament
The Cytoskeleton (III): Molecular Motors
Outline

- Summary: actin and its associated proteins
- Microtubule and its associated proteins; Centrosome
- Intermediate filament and its associated proteins
- An overview of molecular motors
Outline

• Summary: actin and its associated proteins
 • Microtubule and its associated proteins; Centrosome
 • Intermediate filament and its associated proteins
 • An overview of molecular motors
Overview of Cytoskeletal Filaments

<table>
<thead>
<tr>
<th>Shape</th>
<th>Diameter</th>
<th>Subunits</th>
<th>Polarized</th>
</tr>
</thead>
<tbody>
<tr>
<td>actin cable</td>
<td>~6 nm</td>
<td>actin monomer</td>
<td>yes</td>
</tr>
<tr>
<td>microtubule tube</td>
<td>~25nm</td>
<td>tubulin heterodimer</td>
<td>yes</td>
</tr>
<tr>
<td>intermediate rope</td>
<td>~10nm</td>
<td>Various dimers</td>
<td>no</td>
</tr>
</tbody>
</table>
Summary: Actin and its Associated Proteins (I)

- Actin is relatively soft (we will study related quantification in later lectures).

- Actin often form bundles; their mechanical strength comes mostly from bundling and crosslinking.

- Actin function mostly to withstand tension rather than compression.

- Actin is relatively stable and easy to work with biochemically.
Summary: Actin and its Associated Proteins (II)

• Different actin associated proteins serve a broad range of functions.

• These proteins generally have multiple functional domains serving multiple functions.

• Some but not all of them are essential.

• Most of the proteins have functional overlap.

• Mathematical models are required to understand complex interactions between these proteins.
Outline

- Summary: actin and its associated proteins
- Microtubule and its associated proteins; Centrosome
- Intermediate filament and its associated proteins
- An overview of molecular motors
Overview of Microtubule Structure

• Microtubule is polarized.
 - plus (β-tubulin) end
 - minus (α-tubulin) end

• The outer diameter of a microtubule is ~25 nm.

• A microtubule typically has 13 protofilaments; Some may have 11, 15, or even 16.

• The GTP bound to the α-tubulin monomer does not hydrolyze.
Microtubule Organization at Different Stages

- **Microtubule in interphase**
 - Organized into a radial pattern centered at the centrosome

- **Microtubule in metaphase**
 - Organized into a bipolar architecture

Fig. 34-1
Microtubule Dynamic Instability (I)

Video 1
(Figure 1A)
Microtubules in a PtK1 cell at the edge of an epithelial cell island. Few microtubules rapidly grow into nascent protrusions.
Elapsed time: 9 min 05 sec

Microtubule Dynamic Instability (II)

- Rapid growth with GTP-capped end
- Accidental loss of GTP cap (CATASTROPHE)
- Rapid shrinkage
- Regain of GTP cap (RESCUE)
- Rapid growth with GTP-capped end
- Etc.

GTP cap

Less stable region of microtubule containing GDP-tubulin dimers

Growing

Shrinking

50 nm
Microtubule Treadmilling vs Dynamic Instability

Table 1. Comparison of the parameters of microtubule dynamics in vitro and in vivo. Dashes indicate that no microtubules were formed. NA, not applicable.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>In vitro (25 μM tubulin)</th>
<th>In vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tubulin alone</td>
<td>+0.8 μM XMAP215</td>
</tr>
<tr>
<td>Growth (V_g) (μm/min)</td>
<td>2.56 (±0.75)</td>
<td>6.76 (±1.76)</td>
</tr>
<tr>
<td>Shrinkage (V_s) (μm/min)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Catastrophe (f_{cat}) (events/min)</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>Rescue (f_{res}) (events/min)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Xenopus egg extracts | Newt lung cells§ | Mammalian LLCPK-1 cells§ |
Interphase* | Mitotic† | Interphase | Mitotic |
7.10 | 11.40 | 7.20 | 11.50 | 12.80 |
9.40 | 13.50 | 17.30 | 13.10 | 14.10 |
0.69 | 2.44 | 0.84 | 1.56 | 3.48 |
1.08 | 0.70 | 2.64 | 10.50 | 2.70 |

*Verde et al. (9). †Toumebize et al. (10). ‡Cassimeris et al. (5). §Rusan et al. (7).
Overview of Microtubule Associated Proteins

A. Stabilizing
- Minus-end binding: γ-tubulin ring complex
- Side binding: MAP2, tau
- Plus-end binding: Capping (STOP)
 - TIPS (CLIP170, EB1)
 - Dis1/TOG
- Selenium: Katanin
- Plus-end binding: Nucleoplasmin (Nilsen=13)
- Dimer binding: Stathmin

B. Destabilizing
- Filament bundling and cross-linking with tau and MAP2
- Link to intermediate filaments

gamma-tubulin: nucleates assembly and remains associated with the minus end
microtubule: grows as barbed end binds to plus ends
microtubule: severs microtubules
Katanin: stabilizes microtubules
MAP2: stabilizes plus ends and accelerates assembly
tau: remains associated with growing plus ends and can link them to other structures, such as membranes
Katanin: severing catastrophe
Dis1/TOG: Destabilization of microtubules
Stathmin: Destabilization of microtubules

Tubulin dimer
(+) Tubulin dimer
Microtubule Associated Proteins (I)

• Stabilizing MAPs
 - Tau
 - MAP2, MAP4

• Destabilizing MAPs
 - Op18/stathmin
 - Katanin
 - XKCM/MCAK
Microtubule Associated Proteins (II)

Frozen deep-etched, shadowed microtubules with (upper) and without (lower) tau

Fixed, embedded sections of microtubules with (upper) and without (lower) MAP2
Microtubule Associated Proteins (III): Tau

• CLIP170 is the first microtubule plus end tracking protein identified.
 → Links membranes to growing plus ends.
 → Binds the microtubule plus end to reduce catastrophe.

• EB1 is another microtubule plus end tracking protein identified.
 → Binds the microtubule plus end to reduce catastrophe.

Summary: Microtubule

• Microtubule is relatively rigid (quantification in following lectures).

• Microtubule often forms bundles. Mechanical strength of microtubule networks comes mostly from bundling and crosslinking.

• Microtubule can withstand compression.

• Microtubule can denature easily and is therefore difficult to work with biochemically.
Centrosome and Centrioles

A. FIBROBLAST

B. NEURON

C. Centrosome organization

- Distal appendage
- Subdistal appendage
- Ninein, centriolin
- Pericentriolar material (PCM)
- γ-tubulin ring complexes
- pericentrin, GMAP210
- microtubule nucleation

γ-tubulin’s lateral interactions resemble those between subunits in MT

β-tubulin
α-tubulin
SPC57 and SPC98 homologues
Other γ TuRC proteins

Centriole

Pericentriolar material (PCM)

Daughter centriole
Centrioles can Form Basal Bodies for Cilia & Flagella

A. Flagella
- Flagella motion
- Cell motion

B. Cilia
- Cilia motion
- Effective stroke
- Recovery stroke
- Cell motion

C. Metachronal wave

Paramecium

10 µm
Outline

• Summary: actin and its associated proteins

• Microtubule and its associated proteins; Centrosome

• Intermediate filament and its associated proteins

• An overview of molecular motors
Intermediate Filament

- So named because of its diameter in striated muscles (diameter ~10nm).
- Its core structure is an \(\alpha \)-helical coiled coil.
- N- and C-terminal domains vary considerably in size.
Intermediate Filament Classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Type</th>
<th>Genes</th>
<th>Molecule</th>
<th>Distribution</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Acidic keratin</td>
<td>>15</td>
<td>40–65 kD, obligate heterodimer with class II</td>
<td>Epithelial cells</td>
<td>Blistering skin, corneal dystrophy, brittle hair and nails</td>
</tr>
<tr>
<td>II</td>
<td>Basic keratin</td>
<td>>15</td>
<td>51–68 kD, obligate heterodimer with class I</td>
<td>Epithelial cells</td>
<td>Similar to class I</td>
</tr>
<tr>
<td>III</td>
<td>Desmin</td>
<td>1</td>
<td>53 kD, homopolymers</td>
<td>Muscle cells</td>
<td>Cardiac and skeletal myopathies</td>
</tr>
<tr>
<td></td>
<td>GFAP</td>
<td>1</td>
<td>50 kD, homopolymers</td>
<td>Glial cells</td>
<td>Alexander disease; mouse null viable</td>
</tr>
<tr>
<td></td>
<td>Periplakin</td>
<td>1</td>
<td>57 kD</td>
<td>Peripheral > CNS neurons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synemin</td>
<td>1</td>
<td>190 kD, interacts with other class III IFs</td>
<td>Muscle cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vimentin</td>
<td>1</td>
<td>54 kD, homopolymers and heteropolymers</td>
<td>Mesenchymal cells</td>
<td>Mouse null viable</td>
</tr>
<tr>
<td>IV</td>
<td>Neurofilament</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NFL</td>
<td>1</td>
<td>Obligate heteropolymers with NFH, NFH</td>
<td>Neurons</td>
<td>Mouse null viable; neuropathies</td>
</tr>
<tr>
<td></td>
<td>NFM</td>
<td>1</td>
<td>Obligate heteropolymers with NF, NFH</td>
<td>Neurons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NFH</td>
<td>1</td>
<td>Obligate heteropolymers with NF, NFM</td>
<td>Neurons</td>
<td>Mutations a risk factor in amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td></td>
<td>α-Internexin</td>
<td>1</td>
<td>55 kD, homopolymers</td>
<td>Embryonic neurons</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Lamins</td>
<td>4</td>
<td>7 Isoforms, 62–72 kD, homodimers</td>
<td>Animal, plant nuclei</td>
<td>Cardiomyopathy, lipodystrophy, one form of Emery-Dreifuss muscular dystrophy, two forms of progeria plus many others</td>
</tr>
<tr>
<td>VI</td>
<td>Nestin</td>
<td>1</td>
<td>230 kD, homopolymers</td>
<td>Embryonic neurons, muscle, other cells</td>
<td></td>
</tr>
</tbody>
</table>

IF, intermediate filament; NFH, neurofilament heavy; NFL, neurofilament light; NFM, neurofilament medium.

Intermediate Filament

• Biochemically most stable among the three cytoskeletal filaments.
• Assembly disassembly regulated by phosphorylation
 - **Phosphorylation**: reaction in which a phosphate group is covalently coupled to another molecule.
 - **Kinase**: an enzyme that catalyzes the addition of phosphate groups
 - **Phosphatase**: an enzyme that catalyzes the removal of phosphate groups
• Phosphorylation may stabilize or destabilize intermediate filaments.
Table 35-2

PROTEINS ASSOCIATED WITH INTERMEDIATE FILAMENTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Molecule</th>
<th>Distribution</th>
<th>Partners</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plakins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPAG-1</td>
<td>Multiple splice isoforms (a, b, c, n) with ABDs and plakin domains ± spectrin and plakin repeats</td>
<td>a: Hemidesmosomes, b: Muscle, cartilage, c: Epithelial hemidesmosomes, n: Neurons</td>
<td>IFs, MTs, actin</td>
<td>Autoimmune bullous pemphigoid</td>
</tr>
<tr>
<td>Desmoplakin</td>
<td>Two splice isoforms with plakin and coiled-coil domains and plakin repeats</td>
<td>Desmosomes</td>
<td>IFs; cadherin and other desmosome proteins</td>
<td>Autoimmune pemphigus; genetic striate palmoplantar keratoderma</td>
</tr>
<tr>
<td>Plectin</td>
<td>Multiple splice isoforms; ABD, plakin domain and plakin repeats</td>
<td>Most tissues except neurons</td>
<td>IFs, actin, MTs, spectrin, β4 integrin</td>
<td>Autoimmune pemphigus; genetic epidermolysis bullosa with muscular dystrophy</td>
</tr>
<tr>
<td>Epidermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filaggrin</td>
<td>Ten 37-kD filagrins cut by proteolysis from profilaggrin</td>
<td>Cornified epithelia</td>
<td>Aggregates keratin</td>
<td></td>
</tr>
<tr>
<td>Lamin Associated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAP1</td>
<td>57-70 kD isoforms</td>
<td>Integral nuclear membrane proteins</td>
<td>Binds laminin to nuclear envelope</td>
<td></td>
</tr>
<tr>
<td>LAP2</td>
<td>50 kD</td>
<td>Integral nuclear membrane protein</td>
<td>Binds laminin to nuclear envelope</td>
<td></td>
</tr>
<tr>
<td>LBR</td>
<td>73 kD</td>
<td>Integral nuclear membrane protein</td>
<td>Binds laminin to nuclear envelope</td>
<td>Pelger-Huët anomaly; Greenberg skeletal dysplasia</td>
</tr>
<tr>
<td>Emerin</td>
<td>34 kD</td>
<td>? Peripheral protein of the inner nuclear membrane</td>
<td>? Nuclear and binds actin filaments to the nuclear envelope</td>
<td>Emery-Dreifuss muscular dystrophy</td>
</tr>
</tbody>
</table>

ABD, actin binding domain; IFs, intermediate filaments; MTs, microtubules.
Plectin Connects IFs to Actin & Microtubules

Microtubule: red
Intermediate filament: orange
Intermediate Filaments

• Intermediate filaments are flexible but stable.

• Primary assumed function of intermediate filaments is to prevent excessive stretching.

• In general, much less is known about intermediate filaments compared to actin and microtubule.
An Example: Microtubule, Intermediate Filament & Organelles in a Frog Axon

Cross-linker System between Neurofilaments, Microtubules, and Membranous Organelles in Frog Axons Revealed by the Quick-freeze, Deep-etching Method

Bar: 0.1μm
Outline

• Summary: actin and its associated proteins

• Microtubule and its associated proteins; Centrosome

• Intermediate filament and its associated proteins

• An overview of molecular motors
Overview of Molecular Motors

- Myosin binds and walks on actin.
- Kinesin and dynein binds and walks on microtubule.
Molecular Motors and Motility Assays

- **Actin motor**
 - myosin
 - Usually for short-distance movement

- **Microtubule motors**
 - kinesin
 - dynein
 - Usually for long-distance movement

- **In vitro motility assays**
 - bead assay
 - microtubule sliding assay
Bead Motility Assay Video

kinesin-coated bead moves along a microtubule
Block Lab, Stanford
Many Molecules Generate Intracellular Force & Motion

<table>
<thead>
<tr>
<th>ATPase</th>
<th>Track</th>
<th>Direction</th>
<th>Cargo</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myosins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle myosin</td>
<td>Actin</td>
<td>Barbed end</td>
<td>Myosin filament</td>
<td>ATP</td>
</tr>
<tr>
<td>Myosin II</td>
<td>Actin</td>
<td>Barbed end</td>
<td>Myosin, actin</td>
<td>ATP</td>
</tr>
<tr>
<td>Myosin I</td>
<td>Actin</td>
<td>Barbed end</td>
<td>Membranes</td>
<td>ATP</td>
</tr>
<tr>
<td>Myosin V</td>
<td>Actin</td>
<td>Barbed end</td>
<td>Organelles</td>
<td>ATP</td>
</tr>
<tr>
<td>Myosin VI</td>
<td>Actin</td>
<td>Pointed end</td>
<td>Endocytic vesicles</td>
<td>ATP</td>
</tr>
<tr>
<td>Dynabins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axonemal</td>
<td>Microtubule</td>
<td>Minus end</td>
<td>Microtubules</td>
<td>ATP</td>
</tr>
<tr>
<td>Kinesins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>Microtubule</td>
<td>Plus end</td>
<td>Membranes, intermediate filaments</td>
<td>ATP</td>
</tr>
<tr>
<td>Ncd</td>
<td>Microtubule</td>
<td>Minus end</td>
<td>? Microtubules</td>
<td>ATP</td>
</tr>
</tbody>
</table>

Other Mechanochemical Systems

<table>
<thead>
<tr>
<th>Polymerases</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribosome</td>
<td>mRNA</td>
<td>5’ to 3’</td>
<td>None</td>
<td>GTP</td>
</tr>
<tr>
<td>DNA polymerase</td>
<td>DNA</td>
<td>5’ to 3’</td>
<td>None</td>
<td>ATP</td>
</tr>
<tr>
<td>RNA polymerase</td>
<td>DNA</td>
<td>5’ to 3’</td>
<td>None</td>
<td>ATP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conformational System</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spasmlin</td>
<td>None</td>
<td>None</td>
<td>Cell, basal body</td>
<td>Ca^{2+}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polymerizing Systems</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin filaments</td>
<td>None</td>
<td>Barbed end</td>
<td>Membranes</td>
<td>ATP</td>
</tr>
<tr>
<td>Microtubules</td>
<td>None</td>
<td>Plus end</td>
<td>Chromosomes</td>
<td>GTP</td>
</tr>
<tr>
<td>Worm sperm MSP</td>
<td>None</td>
<td>Not polar</td>
<td>Cytoskeleton</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotary Motors</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial flagella</td>
<td>None</td>
<td>Bidirectional</td>
<td>Cell</td>
<td>H^+ or Na^+ gradient</td>
</tr>
<tr>
<td>F-type ATPase</td>
<td>None</td>
<td>Bidirectional</td>
<td>None</td>
<td>H^+ or ATP</td>
</tr>
<tr>
<td>V-type ATPase pump</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>ATP</td>
</tr>
</tbody>
</table>

mRNA, messenger RNA; MSP, major sperm protein.
Relations Between Molecular Motors and Cytoskeleton Polymers

- Interactions between motors and cytoskeletal polymers are dynamic and complex.

- Cytoskeletal polymers provide dynamic tracks for molecular motors to walk on.

- Molecular motors active interacts with cytoskeletal polymers. For example,
 - Molecular motors transport cytoskeletal polymers, especially in neurons.
 - Molecular motors, e.g. MCAK, regulate cytoskeletal polymer dynamics.
Molecular Motors Are ATP-Hydrolysis Enzymes

- Molecular motors convert chemical energy derived from ATP hydrolysis directly into mechanical work.

- ATP (adenosine triphosphate) hydrolysis

\[\text{ATP} + \text{H}_2\text{O} \rightleftharpoons \text{ADP} + \text{P}_i \]
Motor Behavior Parameters

• Parameters that characterizing motor behaviors
 - processivity: run-length, number of steps
 - step size
 - stall force

• Myosin is nonprocessive.

• Kinesin and dynein are both processive. Processivity of dynein is weaker.

• Motors walk nano-meter scale steps of specific lengths.

• Stall force is on the pico-Newton level.
Analyzing Motor Movement at Nanometer Resolution

• Nanometer-resolution measurement of step sizes
 - First implemented in late 1980's
 - Based on fitting of point spread function

• Further improved by many others

 - Up to 1nm resolution

Analyzing Motor Force at Piconewton Resolution

- Optical tweezer is used to generate and measure motor stall force.

From Steven Block Lab webpage
http://www.stanford.edu/group/blocklab/
Laser Force Trap Video

kinesin-coated bead moves in a force trap
Block Lab, Stanford
General Motor Structure

- **Motor (head) domain**
 - Produces force and motion

- **Tail domain**
 - Adapts to different cargoes
Different Motility Schemes

Generic motor with stretched spring
- Force
- Motor
- Spring
- ATP
- ADP + P_i
- Cytoskeletal fiber

Resulting movement with anchored fiber
- Motor and cargo move
- Cargo

Resulting movement with anchored motor
- Fiber moves
- Support

Result with anchored fiber and anchored motor
- Spring stretched, force transmitted through fiber to anchoring sites, no movement, energy lost as heat

Support or cargo
Required Reading

- Chapters 2 & 16
Questions ?