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Overview of Cytoskeletal Filaments

Shape Diameter Subunits Polarized

i bl iactin cable ~6 nm actin
monomer

yes

microtubule tube ~25nm tubulin 
heterodimer

yes

4

intermediate 
filament

rope ~10nm Various 
dimers 

no



Summary: Actin and its Associated Proteins (I)

• Actin is relatively soft (we will study 
related quantification in later lectures).

• Actin often form bundles; their 
mechanical strength comes mostly 
from bundling and crosslinking. 

• Actin function mostly to withstand 
tension rather than compression.

• Actin is relatively stable and easy to 
work with biochemically.
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Summary: Actin and its Associated Proteins (II)
• Different actin associated proteins serve 

a broad range of functions.

• These proteins generally have multiple 
functional domains serving multiple 
functions.

• Some but not all of them are essential. 

• Most of the proteins have functional 
overlapoverlap.

• Mathematical models are required to 
understand complex interactions
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understand complex interactions 
between these proteins.  
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Overview of Microtubule Structure

• Microtubule is polarized.
- plus (-tubulin) endp ( )
- minus (-tubulin) end

• The outer diameter of a 
microtubule is ~25 nm. 

• A microtubule typically has 13 y y
protofilaments; Some may have 
11, 15, or even 16. 

• The GTP bound to the -tubulin 
monomer does not hydrolyze. 
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Microtubule Organization at Different Stages

• Microtubule in interphase
- Organized into a radial patternOrganized into a radial pattern 
centered at the centrosome

• Microtubule in metaphase
- Organized into a bipolar architecture

9Fig. 34-1



Microtubule Dynamic Instability (I)y y ( )

T. Wittmann et al, J. Cell Biol., 161:845, 2003. 
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Microtubule Dynamic Instability (II)y y ( )
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Microtubule Treadmilling vs Dynamic Instabilityc o ubu e ead g s y a c s ab y

Khodjakov & Kapoor, Current Biology, 
15:R966-R968, 2005. 
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Representative Microtubule Dynamic Instability Parameters

Kinoshita et al, Science, 294:1340, 2001
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Overview of Microtubule Associated ProteinsO e e o c o ubu e ssoc a ed o e s
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Microtubule Associated Proteins (I)

• Stabilizing MAPs

( )

Tau Binds side and stabilizes microtubules

MAP2, MAP4 Binds side and stabilizes microtubules

• Destabilizing MAPs

Op18/stathmin Binds tubulin dimers & destabilizes MTs

K t i AAA ATP th t i t b lKatanin AAA ATPase that severs microtubules

XKCM/MCAK Kinesin-related; destabilizes plus ends
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Microtubule Associated Proteins (II)( )

Frozen deep-etched, shadowed 
microtubules with (upper) and without 
(lower) tau

Fixed, embedded sections of 
microtubules with (upper) and without 
(lower) MAP2



Microtubule Associated Proteins (III): Tau( )

Ballatore et al, Nat. Rev. Neurosci. 2007
Morris et al, Neuron, 2011
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Microtubule Associated Proteins (IV)
• CLIP170 is the first microtubule plus end tracking protein identified.

Links membranes to growing plus ends. 

( )

Binds the microtubule plus end to reduce catastrophe.

• EB1 is another microtubule plus end tracking protein identified.

 Binds the microtubule plus end to reduce catastrophe.
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Dynamics and mechanics of the microtubule plus end. Howard J, Hyman AA. Nature. 2003 422(6933):753-8.



Summary: Microtubule

• Microtubule is relatively rigid (quantification in following 
lectures).)

• Microtubule often forms bundles. Mechanical strength of 
i t b l t k tl f b dli dmicrotubule networks comes mostly from bundling and 

crosslinking. 

• Microtubule can withstand compression.

• Microtubule can denature easily and is therefore difficult to work• Microtubule can denature easily and is therefore difficult to work 
with biochemically.
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Centrosome and Centrioles
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Centrioles can Form Basal Bodies for Cilia &Flagella

Paramecium

Copyright 2008 by Saunders/Elsevier. All rights reserved.
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Intermediate Filament

• So named because of its diameter in striated muscles (diameter ~10nm).

• Its core structure is an  helical coiled coil• Its core structure is an -helical coiled coil. 

• N- and C-terminal domains vary considerably in size. 
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Intermediate Filament Classification
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Intermediate Filament
• Biochemically most stable among the three cytoskeletal filaments.

• Assembly disassembly regulated by phosphorylationy y g y p p y

- Phosphorylation: reaction in which a phosphate group is covalently coupled   
to another molecule.

- Kinase: an enzyme that catalyzes the addition of phosphate groupsy y p p g p

- Phosphatase: an enzyme that catalyzes the removal of phosphate groups

• Phosphorylation may stabilize or destabilize intermediate filaments.

25



Intermediate Filament Associated ProteinsIntermediate Filament Associated Proteins
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Plectin Connects IFs to Actin & MicrotubulesPlectin Connects IFs to Actin & Microtubules

Microtubule: red
Intermediate filament: orange
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Intermediate FilamentsIntermediate Filaments

• Inter mediate filaments are flexible but stable.

• Primary assumed function of intermediate filaments is to y
prevent excessive stretching.

• In general, much less is known about intermediate filaments 
compared to actin and microtubule. 
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An Example: Microtubule, Intermediate Filament & Organelles 
in a Frog Axon g

Nobutaka Hirokawa
N. Hirokawa, J. Cell Biol. 94:129, 1982

Nobutaka Hirokawa
University of Tokyo
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Overview of Molecular Motors

• Myosin binds and walks on actin.

• Kinesin and dynein binds and
walks on microtubule.
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Vale RD, Cell, 112:467,2003



Molecular Motors and Motility Assays

• Actin motor
i- myosin

- Usually for short-distance movement

Mi t b l t• Microtubule motors
- kinesin 
- dynein

U ll f l di- Usually for long-distance movement

• In vitro motility assays
- bead assay
- microtubule sliding assay
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Bead Motility Assay Videoy y

kinesin coated bead mo es along a microt b lekinesin-coated bead moves along a microtubule
Block Lab, Stanford
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Many Molecules Generate Intracellular 
Force & MotionForce & Motion
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Relations Between Molecular Motors and 
Cytoskeleton PolymersCytoskeleton Polymers

• Interactions between motors and cytoskeletal polymers are
dynamic and complexdynamic and complex.

• Cytoskeletal polymers provide dynamic tracks for molecular• Cytoskeletal polymers provide dynamic tracks for molecular
motors to walk on.

• Molecular motors active interacts with cytoskeletal polymers. 
For example, p ,

- Molecular motors transport cytoskeletal polymers, especially in 
neurons.
Molecular motors e g MCAK regulate cytoskeletal polymer
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- Molecular motors, e.g. MCAK, regulate cytoskeletal polymer 
dynamics. 



Molecular Motors Are ATP-Hydrolysis Enzymesy y y

• Molecular motors convert chemical energy derived from 
ATP hydrolysis directly into mechanical workATP hydrolysis directly into mechanical work.

• ATP (adenosine triphosphate) hydrolysis

ATP + H O ADP + PATP + H2O         ADP + Pi
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Motor Behavior Parameters

• Parameters that characterizing motor behaviors
- processivity: run-length, number of stepsprocessivity: run length, number of steps
- step size
- stall force

• Myosin is nonprocessive• Myosin is nonprocessive.

• Kinesin and dynein are both processive. Processivity of 
dynein is weaker. 

• Motors walk nano meter scale steps of specific lengths• Motors walk nano-meter scale steps of specific lengths. 

• Stall force is on the pico-Newton level.
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Analyzing Motor Movement at Nanometer Resolution

• Nanometer-resolution measurement of step sizes
- First implemented in late 1980'sFirst implemented in late 1980 s
- Based on fitting of point spread function

Tracking kinesin-driven movements with nanometre-scale precision. Gelles J,    
S h BJ Sh t MP N t 331 450 3 (1988)Schnapp BJ, Sheetz MP. Nature. 331:450-3 (1988).

• Further improved by many others 

- Up to 1nm resolution

Ahmet Yildiz, Paul R.Selvin. Fluorescence Imaging with One Nanometer Accuracy 
(FIONA): Application to Molecular Motors, Accounts of Chemical Research,38(7), 574-82
(2005) 
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Analyzing Motor Force at Piconewton Resolution

• Optical tweezer is used to generate and measure motor stall force.

S
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From Steven Block Lab webpage
http://www.stanford.edu/group/blocklab/



Laser Force Trap Video

kinesin coated bead mo es in a force trapkinesin-coated bead moves in a force trap
Block Lab, Stanford
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General Motor Structure

• Motor (head) domain
P d f d ti- Produces force and motion

• Tail domainTail domain
- Adapts to different cargoes

Vale RD, Cell, 112:467,2003
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Different Motility Schemes
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Required Reading

• Chapters 2 & 16p
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Questions ?
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