BME 42-620 Engineering Molecular Cell Biology

Lecture 10:

The Cytoskeleton (II): Microtubule & Intermediate Filament The Cytoskeleton (III): Molecular Motors

Outline

- Summary: actin and its associated proteins
- Microtubule and its associated proteins; Centrosome
- Intermediate filament and its associated proteins
- An overview of molecular motors

Outline

- Summary: actin and its associated proteins
- Microtubule and its associated proteins; Centrosome
- Intermediate filament and its associated proteins
- An overview of molecular motors

Overview of Cytoskeletal Filaments

Summary: Actin and its Associated Proteins (I)

- Actin is relatively soft (we will study related quantification in later lectures).
- Actin often form bundles; their mechanical strength comes mostly from bundling and crosslinking.
- Actin function mostly to withstand tension rather than compression.
- Actin is relatively stable and easy to work with biochemically.

Summary: Actin and its Associated Proteins (II)

- Different actin associated proteins serve a broad range of functions.
- These proteins generally have multiple functional domains serving multiple functions.
- Some but not all of them are essential.
- Most of the proteins have functional overlap.
- Mathematical models are required to understand complex interactions between these proteins.

A. WASp			Src, Btk Nck, Grb2	Arp2/3
Ligands:	EVH1	PIP ₂ Cdc42 Basic GBD	Nck, Grb2 Proline-rich	Actin complex V C A
PIP2 Cdc42 Auto-inhit	GBD pited WASp		Actin Arp2/3 con	Activated WASp nplex ctin filament branch
B. VASP	Profilin & S doma ling-rich ligands EVH1 Proli	H3 AH	horylation site horylation site Self association CC	

Outline

- Summary: actin and its associated proteins
- Microtubule and its associated proteins; Centrosome
- Intermediate filament and its associated proteins
- An overview of molecular motors

Overview of Microtubule Structure

- Microtubule is polarized.
 - plus (β-tubulin) end
 - minus (α -tubulin) end
- The outer diameter of a microtubule is ~25 nm.
- A microtubule typically has 13 protofilaments; Some may have 11, 15, or even 16.

 The GTP bound to the α-tubulin monomer does not hydrolyze.

Microtubule Organization at Different Stages

- Microtubule in interphase
 Organized into a radial pattern centered at the centrosome
- Microtubule in metaphase
 Organized into a bipolar architecture

Microtubule Dynamic Instability (I)

T. Wittmann et al, J. Cell Biol., 161:845, 2003.

Microtubule Dynamic Instability (II)

Microtubule Treadmilling vs Dynamic Instability

Khodjakov & Kapoor, *Current Biology*, 15:R966-R968, 2005.

Representative Microtubule Dynamic Instability Parameters

					In vivo					
Parameter	In vitro (25 μM tubulin)			Xenopus egg extracts		Newt	Mammalian LLCPK-1 cells§			
raiametei	Tubulin alone	+0.8 μM XMAP215	+ 0.2 μM XKCM1	+ 0.8 μΜ XMAP215 + 0.2 μΜ XKCM1	Interphase*	Mitotic†	lung cells‡	Interphase	Mitotic	
Growth (V _g) (μm/min)	2.56 (±0.75)	6.76 (±1.76)	-	8.73 (±3.72)	7.10	11.40	7.20	11.50	12.80	
Shrinkage (V _s) (μm/min)	NA	NA	_	19.94 (±5.20)	9.40	13.50	17.30	13.10	14.10	
Catastrophe (F _{cat}) (events/min)	0.04	0	_	1.06	0.69	2.44	0.84	1.56	3.48	
Rescue (F _{res}) (events/min)	NA	NA	_	1.30	1.08	0.70	2.64	10.50	2.70	

Kinoshita et al, Science, 294:1340, 2001

Overview of Microtubule Associated Proteins

Microtubule Associated Proteins (I)

• Stabilizing MAPs

TauBinds side and stabilizes microtubulesMAP2, MAP4Binds side and stabilizes microtubulesDestabilizing MAPsStabilizes MAPsOp18/stathminBinds tubulin dimers & destabilizes MTsKataninAAA ATPase that severs microtubulesXKCM/MCAKKinesin-related; destabilizes plus ends

Microtubule Associated Proteins (II)

Frozen deep-etched, shadowed microtubules with (upper) and without (lower) tau

Fixed, embedded sections of microtubules with (upper) and without (lower) MAP2

Microtubule Associated Proteins (III): Tau

Ballatore et al, *Nat. Rev. Neurosci.* 2007 Morris et al, *Neuron*, 2011

Microtubule Associated Proteins (IV)

- CLIP170 is the first microtubule plus end tracking protein identified.
 →Links membranes to growing plus ends.
 - \rightarrow Binds the microtubule plus end to reduce catastrophe.
- EB1 is another microtubule plus end tracking protein identified.
 - \rightarrow Binds the microtubule plus end to reduce catastrophe.

Dynamics and mechanics of the microtubule plus end. Howard J, Hyman AA. Nature. 2003 422(6933):753-8.

Summary: Microtubule

- Microtubule is relatively rigid (quantification in following lectures).
- Microtubule often forms bundles. Mechanical strength of microtubule networks comes mostly from bundling and crosslinking.
- Microtubule can withstand compression.
- Microtubule can denature easily and is therefore difficult to work with biochemically.

Centrosome and Centrioles

Centrioles can Form Basal Bodies for Cilia & Flagella

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Outline

- Summary: actin and its associated proteins
- Microtubule and its associated proteins; Centrosome
- Intermediate filament and its associated proteins
- An overview of molecular motors

Intermediate Filament

- So named because of its diameter in striated muscles (diameter ~10nm).
- Its core structure is an α -helical coiled coil.
- N- and C-terminal domains vary considerably in size.

Intermediate Filament Classification

Class	Туре	Genes	Molecule	Distribution	Diseases
I	Acidic keratin	>15	40-65 kD, obligate heterodimer with class II	Epithelial cells	Blistering skin, corneal dystrophy, brittle hair and nails
п	Basic keratin	>15	51–68 kD, obligate heterodimer with class I	Epithelial cells	Similar to class I
III	Desmin	1	53 kD, homopolymers	Muscle cells	Cardiac and skeletal myopathies
	GFAP	1	50 kD, homopolymers	Glial cells	Alexander disease; mouse null viable
	Peripherin	1	57 kD	Peripheral > CNS neurons	
	Synemin	1	190 kD, interacts with other class III IFs	Muscle cells	
	Vimentin	1	54 kD, homopolymers and heteropolymers	Mesenchymal cells	Mouse null viable
IV	Neurofilament				
	NFL	1	Obligate heteropolymers with NFM, NFH	Neurons	Mouse null viable; neuropathies
	NFM	1	Obligate heteropolymers with NFL, NFH	Neurons	
	NFH	1	Obligate heteropolymers with NFL, NFM	Neurons	Mutations a risk factor in amyotrophic lateral sclerosis
	α-Internexin	1	55 kD, homopolymers	Embryonic neurons	
v	Lamins	4	7 Isoforms, 62-72 kD, homodimers	Animal, plant nuclei	Cardiomyopathy, lipodystrophy, one form of Emery-Dreifuss muscular dystrophy, two forms of progeria plus many others
VI	Nestin	1 Temper	230 kD, homopolymers	Embryonic neurons, muscle, other cells	

IF, intermediate filament; NFH, neurofilament heavy; NFL, neurofilament light; NFM, neurofilament medium.

Reference: Omary MB, Coulombe PA, McLean WHI: Intermediate filament proteins and their associated diseases. New Engl J Med 351:2087-2100, 2004.

Intermediate Filament

- Biochemically most stable among the three cytoskeletal filaments.
- Assembly disassembly regulated by phosphorylation
 - <u>Phosphorylation</u>: reaction in which a phosphate group is covalently coupled to another molecule.
 - Kinase: an enzyme that catalyzes the addition of phosphate groups
 - <u>Phosphatase</u>: an enzyme that catalyzes the removal of phosphate groups
- Phosphorylation may stabilize or destabilize intermediate filaments.

Intermediate Filament Associated Proteins

Table 35-2	aller in the particulation			a to militar strategier far
PROTEINS	ASSOCIATED WITH INTERI	MEDIATE FILAMENTS		State of the second second
Name	Molecule	Distribution	Partners	Diseases
Plakins				
BPAG-1	Multiple splice isoforms (a, b, e, n) with ABDs and plakin domains ± spectrin and plakin repeats	a: Hemidesmosomes b: Muscle, cartilage e: Epithelial hemidesmosomes n: Neurons	IFs, MTs, actin	Autoimmune bullous pemphigoid
Desmoplakin	Two splice isoforms with plakin and coiled-coil domains and plakin repeats	Desmosomes	IFs; cadherin and other desmosome proteins	Autoimmune pemphigus; genetic striate palmoplantar keratoderma
Plectin	Multiple splice isoforms; ABD, plakin domain and plakin repeats	Most tissues except neurons	IFs, actin, MTs, spectrin, β4 integrin	Autoimmune pemphigus; genetic epidermolysis bullosa with muscular dystrophy
Epidermal				
Filaggrin	Ten 37-kD filaggrins cut by proteolysis from profilaggrin	Cornified epithelia	Aggregates keratin	?
Lamin Assoc	iated			
LAP1	57-70 kD isoforms	Integral nuclear membrane proteins	Binds laminin to nuclear envelope	
LAP2	50 kD	Integral nuclear membrane protein	Binds laminin to nuclear envelope	
LBR	73 kD	Integral nuclear membrane protein	Binds laminin to nuclear envelope	Pelger-Huët anomaly; Greenberg skeletal dysplasia
Emerin	34 kD	? Peripheral protein of the inner nuclear membrane	? Nucleates and binds actin filaments to the nuclear envelope	Emery-Dreifuss muscular dystrophy

ABD, actin binding domain; IFs, intermediate filaments; MTs, microtubules.

Plectin Connects IFs to Actin & Microtubules

Microtubule: red Intermediate filament: orange

Intermediate Filaments

- Inter mediate filaments are flexible but stable.
- Primary assumed function of intermediate filaments is to prevent excessive stretching.
- In general, much less is known about intermediate filaments compared to actin and microtubule.

An Example: Microtubule, Intermediate Filament & Organelles in a Frog Axon

Cross-linker System between Neurofilaments, Microtubules, and Membranous Organelles in Frog Axons Revealed by the Quick-freeze, Deep-etching Method

> NOBUTAKA HIROKAWA Department of Physiology and Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110

Nobutaka Hirokawa University of Tokyo

N. Hirokawa, J. Cell Biol. 94:129, 1982

Outline

- Summary: actin and its associated proteins
- Microtubule and its associated proteins; Centrosome
- Intermediate filament and its associated proteins
- An overview of molecular motors

Overview of Molecular Motors

- Myosin binds and walks on actin.
- Kinesin and dynein binds and walks on microtubule.

Vale RD, Cell, 112:467,2003

Molecular Motors and Motility Assays

- Actin motor
 - myosin
 - Usually for short-distance movement
- Microtubule motors
 - kinesin
 - dynein
 - Usually for long-distance movement
- In vitro motility assays
 - bead assay
 - microtubule sliding assay

Bead Motility Assay Video

kinesin-coated bead moves along a microtubule Block Lab, Stanford

Many Molecules Generate Intracellular Force & Motion

EXAMPLES OF MECHANOCHEMICAL ATPASES AND OTHER SYSTEMS							
Families	Track	Direction	Cargo	Energy			
ATPases							
Myosins							
Muscle myosin	Actin	Barbed end	Myosin filament	ATP			
Myosin II	Actin	Barbed end	Myosin, actin	ATP			
Myosin I	Actin	Barbed end	Membranes	ATP			
Myosin V	Actin	Barbed end	Organelles	ATP			
Myosin VI	Actin	Pointed end	Endocytic vesicles	ATP			
Dyneins							
Axonemal	Microtubule	Minus end	Microtubules	ATP			
Cytoplasmic	Microtubule	Minus end	Membranes, chromosomes	ATP			
Kinesins							
Conventional	Microtubule	Plus end	Membranes, intermediate filaments	ATP			
Ncd	Microtubule	Minus end	? Microtubules	ATP			
Other Mechanochemica	al Systems						
Polymerases							
Ribosome	mRNA	5' to 3'	None	GTP			
DNA polymerase	DNA	5' to 3'	None	ATP			
RNA polymerase	DNA	5' to 3'	None	ATP			
Conformational System							
Spasmin/centrin	None	None	Ccll, basal body	Ca ²⁺			
Polymerizing Systems							
Actin filaments	None	Barbed end	Membranes	АТР			
Microtubules	None	Plus end	Chromosomes	GTP			
Worm sperm MSP	None	Not polar	Cytoskeleton				
Rotary Motors							
Bacterial flagella	None	Bidirectional	Cell	H ⁺ or Na ⁺ gradier			
F-type ATPase	None	Bidirectional	None	H ⁺ or ATP			
V-type ATPase pump	None		None	ATP			

mRNA, messenger RNA; MSP, major sperm protein.

Relations Between Molecular Motors and Cytoskeleton Polymers

- Interactions between motors and cytoskeletal polymers are dynamic and complex.
- Cytoskeletal polymers provide dynamic tracks for molecular motors to walk on.
- Molecular motors active interacts with cytoskeletal polymers.
 For example,
 - Molecular motors transport cytoskeletal polymers, especially in neurons.
 - Molecular motors, e.g. MCAK, regulate cytoskeletal polymer dynamics.

Molecular Motors Are ATP-Hydrolysis Enzymes

- Molecular motors convert chemical energy derived from ATP hydrolysis directly into mechanical work.
- ATP (adenosine triphosphate) hydrolysis

Motor Behavior Parameters

- Parameters that characterizing motor behaviors
 - processivity: run-length, number of steps
 - step size
 - stall force
- Myosin is nonprocessive.
- Kinesin and dynein are both processive. Processivity of dynein is weaker.
- Motors walk nano-meter scale steps of specific lengths.
- Stall force is on the pico-Newton level.

Analyzing Motor Movement at Nanometer Resolution

- Nanometer-resolution measurement of step sizes
 - First implemented in late 1980's
 - Based on fitting of point spread function

<u>Tracking kinesin-driven movements with nanometre-scale precision.</u> Gelles J, Schnapp BJ, Sheetz MP. *Nature*. 331:450-3 (1988).

- Further improved by many others
 - Up to 1nm resolution

Ahmet Yildiz, Paul R.Selvin. <u>Fluorescence Imaging with One Nanometer Accuracy</u> (<u>FIONA</u>): <u>Application to Molecular Motors</u>, *Accounts of Chemical Research*,38(7), 574-82 (2005)

Analyzing Motor Force at Piconewton Resolution

• Optical tweezer is used to generate and measure motor stall force.

http://www.stanford.edu/group/blocklab/

Laser Force Trap Video

kinesin-coated bead moves in a force trap Block Lab, Stanford

General Motor Structure

- Motor (head) domain
 - Produces force and motion
- Tail domain
 - Adapts to different cargoes

Vale RD, Cell, 112:467,2003

Different Motility Schemes

Required Reading

• Chapters 2 & 16

Questions?