Engineering Molecular Cell Biology Lecture 8, Fall 2010

The Cytoskeleton (I)

Chapters 33, 34, 35

Outline

- Overview
- Actin and its accessory proteins
- Microtubule and its accessory proteins
- Centrosomes
- Intermediate filaments and its accessory proteins

The Cytoskeleton (I)

- Three classes of filaments
 - actin: stress fiber; cell cortex; filopodium
 - microtubule: centrosome
 - intermediate filaments

Red: actin Green: microtubule

The Cytoskeleton (II)

- Intermediate filaments
- Spatial organization of cytoskeletal filaments is dependent on many factors, e.g.
 - cell type
 - cell states (cycle)
 - cell activities

Green: vimentin IF Red: microtubule

Orange: keratin IF Green: desmosome

The Cytoskeleton (III)

- The cytoskeleton plays a critical role in many basic cellular functions, e.g.
 - structural organization & support
 - shape control
 - intracellular transport
 - force and motion generation
 - signaling integration
- Highly dynamic and adaptive

Overview of Cytoskeletal Filaments

Organization of Actin with a Cell

Actin Structure and Function

- Each actin subunit is a globular monomer.
- One ATP binding site per monomer.
- Functions
 - Cell migration
 - Cell shape
 - Used as tracks for myosin for short distance transport

Basics Terms of Chemical Reaction Kinetics

• A reversible bimolecular binding reaction

 $A + B \iff AB$

- Rate of association = k₊[A][B]
- Rate of disassociation = k_[AB]
- At equilibrium k₊[A][B] = k₋[AB]

Actin Nucleation and Nucleotide Hydrolysis

 Actin polymerizes and depolymerizes substantially faster at the plus end (barbed end) than at the minus end (pointed end).

Actin Accessory Proteins (I)

- More than 60 families identified so far.
- Functions
 - Monomer binding
 - Nucleation
 - Filament capping
 - Filament severing
 - Filament side-binding and supporting
 - Filament crosslinking

- Signaling adapter

• Functional overlap and collaboration between actinbinding proteins

Actin Accessory Proteins (II)

- Monomer binding proteins
 - profilin: to bind actin monomer and accelerate elongation
 - thymosin: to bind and lock actin monomer
 - ADF/cofilin: to bind and destabilize ADP-actin filaments

Actin Accessory Proteins (III)

- Actin nucleation
 - Formins: to initiate unbranched actin filaments
 - Arp2/3: to bind the side of actin and initiate branching

Actin Accessory Proteins (IV)

- Actin capping protein
 - Blocks subunit addition and disassociation
- Actin severing protein
- Three families of proteins perform both functions
 - Gelsolin
 - Fragmin-severin
 - ADF/cofilin

Actin Accessory Proteins (V)

- Actin side-binding proteins
 tropomyosin, nebulin, caldesmon
- Actin crosslinking
 - α -actinin
 - filamin
 - spectrin
 - ERM

Actin Adapter Protein

• WASP & VASP

Actin Regulation

 GTPase: Molecule switch; Family of proteins that are activated by GTP binding and inactivated by GTP hydrolysis and phosphate dissociation.

- Rho GTPase: <u>cdc42</u>: its activation triggers actin polymerization and bundling at filopodia.
 - <u>Rho:</u> its activation promotes actin bundling.

<u>Rac:</u> its activation promotes polymerization at the cell periphery.

Rac on Actin Organization

Summary: actin

- Relatively soft (quantification in following lectures).
- Often form bundles; mechanical strength comes mostly from bundling and crosslinking.
- Mostly function to withstand tension rather than compression.
- Relatively stable and easy to work with (biochemically).

Summary: actin accessory proteins

- Different proteins have distinct functions.
- Proteins with multiple functional domains can have multiple functions.
- Some of them are essential.
- Most of the proteins have functional overlap.

Questions?