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Comments on Reading Assignment 1 (I)

• What is systems biology?
- System integration in different dimensions: not just across different 

l l b t diff t lmolecules, but across different scales.

• Benefits, challenges, limitations?Benefits, challenges, limitations?
“Though systems biology has been touted for its potential, the fact is 

that it has not yet produced a useful predictive model.”

“This type of study sounds ideal…The theory of systems biology is 
slightly ahead of the technology able to harness it; a major, but hopefully 
only temporary, drawback.  

“Although we can apply methods used in analyzing engineering 
systems to investigate biological systems, we still cannot obtain better 
understanding of these biological systems through these methods. This is 
due to lots of differences between an engineering system and a biological 
systems. ……More additional structure information is needed to 
comprehend a biological system.” 2



Comments on Reading Assignment 1 (II)

• Where we are? What we can do?

• Does modeling equal understanding?
“I have wondered for a while about the question of whether it is enough toI have wondered for a while about the question of whether it is enough to 
simply model something, or whether scientists should generate models that 
can be understood. I think that the prevailing feeling in science is that we 
want to understand things, but I am not convinced that we can truly 
understand biology. That is, we may (at some point) be able to accurately 
model all the effects of a drug on the body, but I doubt whether any human 
will be able to explain why these effects occur. Such a model would be 
highly useful but deeply unsatisfying Does systems biology aim to makehighly useful but deeply unsatisfying. Does systems biology aim to make 
models that are both simple to understand and accurate, and is that a 
reasonable goal?”
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Diffusion

• Diffusion: microscopic theoryDiffusion: microscopic theory

• Diffusion: macroscopic theory

• Determination of diffusion coefficient

4



Introduction

Cell lar molec les are s bject to thermal force d e• Cellular molecules are subject to thermal force due 
to collisions with water and other molecules. 

• The resulting motion and energy are called thermal 
motion and thermal energy. 
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Movement of a Free Molecule (I)

• The average kinetic energy of a particle of mass m 
and velocity v is

21
2 2x

kTmv 

Boltzmann constant=1.381×10-23 J/K

tK = tC + 273.15

where k is Boltzmann's constant and T is absolute 
temperature (Einstein 1905)

2 2

temperature (Einstein 1905).

• Principle of equipartition of energy

21 3
2 2

kTmv 

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Movement of a Free Molecule (II)

• Molecular mass of GFP is 27 kDa. One atomic mass unit (Da) is 
1.660610-24g. So the mass of one GFP molecule is 4.4810-20g. 

At 27 degree C, kT is 4.14 10-14g·cm2/sec2. 

2 961 3 cm/secx
kTv .
m

 
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1D Random Walk in Solution (I)

• Assumptions:
(1) A particle i has equal probabilities to walk to the left and to the right.
(2) Particle movement at consecutive time points are independent.
(3) Movement of different particles are independent. 
(4) Each particle moves at a average step size of δ=vx·τ
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• Property 1: The mean position of a particle (or an ensemble of 
particles) undergoing random walk remains at the origin.
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particles) undergoing random walk remains at the origin.   



1D Random Walk in Solution (II)

• Property 2: The mean square displacement of a particle 
undergoing random walk increases linearly w r t timeundergoing random walk increases linearly w.r.t. time.
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Application of the Microscopic Theory (I)

Object Distance diffused

1 μm 100 μm 1 mm 1 m1 μm 100 μm 1 mm 1 m

K+ 0.25ms 2.5s 2.5104s
(7 hrs)

2.5108s 
(8 yrs)(7 hrs) (8 yrs)

Protein 5ms 50s 5.0105s 
(6 days)

5.0109s 
(150 yrs)

Organelle 1s 104s 108s 1012sg
(3 hrs) (3 yrs) (31710 yers)

K+: Radius = 0 1nm viscosity = 1mPa·s-1; T = 25°C; D=2000 μm2/secK+: Radius = 0.1nm, viscosity = 1mPa·s ; T = 25 C; D=2000 μm /sec
Protein: Radius = 3nm, viscosity = 0.6915mPa·s-1; T = 37; D = 100 μm2/sec
Organelle: Radis = 500nm, viscosity = 0.8904mPa·s-1; T = 25°C; D = 0.5 μm2/sec
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1D Random Walk in Solution (II)

• Property 3: The displacement of a particle follows a normal 
distributiondistribution. 
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1D Random Walk in Solution (III)
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Application of the Microscopic Theory (II)

Pure diffusionx2 >

Diffusion with external flow
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H. Qian, M. P. Sheetz, E. L. Elson, Single particle tracking: 
analysis of diffusion and flow in two-dimensional systems, 
Biophysical Journal 60(4):910 921 1991

t
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Macroscopic Theory of Diffusion (I)
• Fick's first equation: net flux is proportional to the slope 

of the concentration function.
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Macroscopic Theory of Diffusion (II)

• Fick's second equation

       1
x xC t C t F x F x A

A
  


           

       

   

1 1 1

1
x xC t C t F x F x A

A
F x F x

  
  



           

        x xF x F x


  

2
xFC CD 

2
x D

t x x
  

  

The time rate of change in concentration is proportional to 
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Calculation of Diffusion Coefficient

2

2 
• Einstein-Smoluchowski Relation
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 f: viscous drag coefficient

• Stokes' relation: the viscous drag coefficient of a 
sphere moving in an unbounded fluid

6f r : viscousity
r: radius
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An example of D calculation
• Calculation of diffusion coefficient

6
kTD

r


• k=1.38110-23J/k=1.381 10-17 N·m/k



• T = 273.15 + 25
• =0.8904mPa·s=0.8904 10-3 10-12N·m-2·s
• r= 500nm=0 5μmr 500nm 0.5μm
• D=0.5 m2/s
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An example of direct measurement of DAn example of direct measurement of D

M. B. Elowitz et al, Protein mobility in the cytoplasm of E. coli,
J B t i l 181 197 203 1999J. Bacteriology, 181:197-203, 1999
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Questions? Comments?
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