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SUMMARY

The size of the nucleus varies among different cell
types, species, and disease states, but mechanisms
of nuclear size regulation are poorly understood. We
investigated nuclear scaling in the pseudotetraploid
frog Xenopus laevis and its smaller diploid relative
Xenopus tropicalis, which contains smaller cells and
nuclei. Nuclear scaling was recapitulated in vitro
using egg extracts, demonstrating that titratable
cytoplasmic factors determine nuclear size to
a greater extent than DNA content. Nuclear import
rates correlated with nuclear size, and varying the
concentrations of two transport factors, importin
a and Ntf2, was sufficient to account for nuclear
scaling between the two species. Both factorsmodu-
lated lamin B3 import, with importin a increasing
overall import rates and Ntf2 reducing import based
on cargo size. Importin a also contributes to nuclear
size changes during early X. laevis development.
Thus, nuclear transport mechanisms are physiolog-
ical regulators of both interspecies and develop-
mental nuclear scaling.

INTRODUCTION

Cell size varies widely among different organisms, as well as

within the same organism in different tissue types and during

development, placing variable metabolic and functional

demands on internal organelles (Hall et al., 2004). A fundamental

question in cell biology is how organelle size is regulated to

accommodate cell size differences. Models proposed to

describe the regulation of organelle size can be broadly divided

into those involving static mechanisms, in which the amount or

size of one structural component determines the organelle’s

size, or dynamicmechanismswhereby feedback from the organ-

elle regulates its own assembly or balances rates of assembly

and disassembly (Marshall, 2002, 2008). Although these models

have been applied to size control of relatively simple linear struc-

tures like flagella (Wilson et al., 2008) and stereocilia (Manor and

Kachar, 2008), mechanisms that regulate the size of organelles

with more complex geometries have been difficult to elucidate.

The nucleus is a particularly important example of an organelle

that exhibits wide variations in size among eukaryotes, with
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nuclear surface area spanning over two orders of magnitude

from budding yeast to certain amphibians (Maul and Deaven,

1977). Although correlations between ploidy and the size of the

nucleus are well documented (Cavalier-Smith, 2005; Fank-

hauser, 1939), when genetic and growth conditions were altered

in budding and fission yeasts, nuclear size varied with cell size

and not ploidy (Jorgensen et al., 2007; Neumann and Nurse,

2007). The functional significance of maintaining proper nuclear

morphology is unclear, but defects in nuclear size and shape

are associated with and diagnostic of human disease, including

cancer and other pathologies (Webster et al., 2009; Zink et al.,

2004).

Whereas molecular mechanisms that determine nuclear size

are largely unknown, structural components of the nucleus likely

play a role. Inmetazoans, the nuclear envelope (NE) is composed

of a double lipid bilayer perforated by nuclear pore complexes

(NPCs) that mediate nucleocytoplasmic transport. The outer

NE is continuous with the endoplasmic reticulum (ER), and the

inner NE is lined on the nucleoplasmic side with a meshwork of

lamin intermediate filaments constituting the nuclear lamina.

Lamin depletion reduces nuclear size (Jenkins et al., 1993; New-

port et al., 1990), and disease-causing mutations in lamins and

lamin-associated proteins alter nuclear size and shape (Dechat

et al., 2008). The NE breaks down prior to mitosis in most animal

cells, and upon its reformation, the nucleus expands in a process

that requires protein import (Neumann and Nurse, 2007; New-

port et al., 1990), accompanied by insertion of new NPCs (D’An-

gelo et al., 2006). The classical nuclear import pathway is medi-

ated by a family of importin a transport receptors that bind

nuclear localization signal (NLS)-containing proteins and impor-

tin b, the protein that directs translocation through the NPC.

Generation of Ran-GTP by its guanine exchange factor in the

nucleus ensures unidirectional import, as only Ran in its GTP-

bound state binds importin b, thereby releasing importin a and

NLS cargos within the nucleus. Importin b bound to Ran-GTP

is recycled to the cytoplasm, where nucleotide hydrolysis takes

place, and Ran-GDP is then imported by the dedicated transport

factor Ntf2, promoting another round of Ran-GTP production

and cargo release (Madrid and Weis, 2006; Stewart, 2007).

One approach to studying nuclear size control is to investi-

gate scaling, the phenomenon that nuclear size often correlates

with cell size. Two related frog species exemplify scaling: Xen-

opus laevis animals, cells, and eggs are larger than Xenopus

tropicalis (Horner and Macgregor, 1983). A significant advan-

tage of this system is that cell-free extracts prepared from Xen-

opus eggs reconstitute assembly of subcellular structures and
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organelles in vitro, including the nucleus and mitotic spindle

(Maresca and Heald, 2006). Thus, it is possible to examine

intrinsic mechanisms of organelle scaling in a cell-free environ-

ment. By this approach, Xenopus species-specific scaling by

cytoplasmic factors has been demonstrated for the mitotic

spindle (Brown et al., 2007). Evidence for scaling of the nucleus

by cytoplasmic factors comes from experiments in fission yeast

showing that nuclear size correlated with the relative amount of

surrounding cytoplasm (Neumann and Nurse, 2007).

In this study, we demonstrate that nuclear size scales

between X. laevis and X. tropicalis and that titratable cyto-

plasmic factors influence nuclear size to a greater extent than

DNA content. We find that importin a and Ntf2 levels mediate

interspecies nuclear scaling, at least in part, by regulating the

import of lamin B3. Whereas importin a regulates the overall

import rate of NLS cargos, Ntf2 modulates import based on

cargo size. We further demonstrate that nuclear size scales

during early X. laevis development and that, similar to our find-

ings in egg extracts, changes in nuclear import and importin

a levels contribute to these developmentally regulated nuclear

size changes.

RESULTS

Nuclear Size and Import Scale between X. laevis

and X. tropicalis In Vitro
Nuclei were assembled in X. laevis and X. tropicalis egg extracts,

using X. laevis sperm as the chromatin source. At different time

points, nuclei were fixed, visualized by immunofluorescence

with an antibody against the NPC (Figure 1A), and quantified

for NE surface area (Figure 1B). Nuclei assembled within

30–40 min after chromatin addition and were initially similar in

size in both extracts but, over time, grew larger in X. laevis extract

compared to X. tropicalis. Though nuclei in these extracts do not

attain a steady-state size, X. tropicalis nuclei never reach the size

of X. laevis nuclei. Extracts prepared from different batches of

eggs exhibited some variability, but analysis of five extracts for

each species yielded an average NE expansion rate of

70 ± 9 mm2/min in X. laevis and 30 ± 9 mm2/min in X. tropicalis

(mean ± SD, Figure 1B). On average, NE surface area was

2.3-fold greater in X. laevis extract compared to X. tropicalis.

Similar interspecies nuclear growth differences were observed

in live samples by time-lapse fluorescence microscopy visual-

izing nuclear import of green fluorescent protein (GFP) fused to

the classical SV40 NLS (Movie S1 and Figure S1A available on-

line). To address whether continual nuclear expansion was

a peculiarity of the extract system, we measured nuclear size

over time in early cleavage stage X. laevis embryos. Nuclei

expanded in vivo at a rate comparable to that of egg extracts

and failed to reach a steady-state size in arrested embryos

(Figure S1B), demonstrating that extracts faithfully recapitulate

nuclear dynamics in the early embryo, where cell-cycle timing

sets the limit for nuclear growth.

Mixing the two extracts at different ratios produced a graded

effect on nuclear size (Figure 1C), suggesting that neither extract

possesses dominant activating or inhibitory factors. Addition of

extract fractionated by high-speed centrifugation to preassem-

bled nuclei revealed that cytosol had a greater effect on nuclear
size than membrane (data not shown). When nuclei were formed

with reduced DNA content, using X. tropicalis sperm with 55%

the DNA of X. laevis sperm, only an average 12% reduction in

nuclear surface area was observed (Figure 1D). Taken together,

these results demonstrate that, in this system, titratable cyto-

plasmic factors determine nuclear size to a greater extent than

the amount of nuclear DNA. X. laevis sperm nuclei were used

in all subsequent egg extract experiments, and the species

denotes whether nuclei were formed in X. laevis or X. tropicalis

extracts.

Of interest, we observed that GFP-NLS accumulated at

a faster rate and to a greater overall extent in X. laevis nuclei

compared to X. tropicalis in both live and fixed samples

(Figure 1E, Figure S1C and S1D, and Movie S1). To elucidate

this difference in nuclear import capacities between the two

species, we first considered their nuclear pores. During early

NE expansion, the total NPC number was similar in X. laevis

and X. tropicalis nuclei, with a slightly higher density in X. tropica-

lis (Figure S1E and S1F). Because nuclear growth is accompa-

nied by new NPC insertion (D’Angelo et al., 2006), the total

NPC number increased more over time in X. laevis nuclei than

in X. tropicalis nuclei, whereas the NPC densities remained

comparable (Figures S1E and S1F). Whereas NPC number did

not correlate with nuclear size during early NE expansion, there

was a marked difference in their import properties. Large cargos

consisting of streptavidin-conjugated quantum dots (Qdots)

coated with a biotin-labeled domain of snurportin-1 that binds

importin b (Lowe et al., 2010) were efficiently imported into X. lae-

vis nuclei but failed to accumulate in X. tropicalis nuclei over time,

although they localized to the NE (Figure 1F). These 40 ± 9 nm

diameter particles are similar in size to a 20 megadalton macro-

molecule. Thus, X. laevis nuclei are capable of importing larger

cargos than X. tropicalis and have a higher overall import

capacity for NLS-containing proteins.

Importin a2 and Ntf2 Levels Differ between X. laevis

and X. tropicalis

Given the observed nuclear import differences in the two

extracts, we measured the relative amounts of nucleocytoplas-

mic transport proteins by western blot and immunofluorescence

to determine whether concentrations of any of these proteins

correlated with import. Whereas the levels of many transport

factors, including Ran, RanGAP, RanBP1, and Cas, were similar

in the two extracts, the concentration of the predominant impor-

tin a isoform, a member of the importin a2 subfamily, was 3-fold

higher in X. laevis compared to X. tropicalis (Figure 2A and

Figure S2). Levels of importin a1, importin a3, and importin

b were also higher in X. laevis but to a lesser degree (Figure 2A

and Figure S2). Furthermore, X. laevis nuclei stained more

intensely for importin a2 and importin b than X. tropicalis nuclei

(Figures 2B and 2C).

In contrast, Ntf2 showed the opposite trend compared to im-

portin a, with levels almost 4-fold higher in X. tropicalis extract,

and more intense Ntf2 nuclear staining (Figure 2). As Ntf2 is the

nuclear import factor dedicated to recycling Ran-GDP from the

cytoplasm to the nucleus (Smith et al., 1998), these higher Ntf2

levels likely explain why nuclear Ran was greater in X. tropicalis

compared to X. laevis, even though total Ran levels were similar
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Figure 1. Nuclear Size and Import Scale between X. laevis and X. tropicalis
(A) Nuclei were assembled in X. laevis or X. tropicalis egg extract with X. laevis sperm and visualized by immunofluorescence using mAb414 that recognizes the

NPC. Scale bar, 20 mm.

(B) NE surface area was quantified from images like those in (A) for at least 50 nuclei at each time point. Best-fit linear regression lines are displayed for six X. laevis

and five X. tropicalis egg extracts, and the average difference between the two extracts was statistically significant by Student’s t test (p < 0.001). R2 values range

from 0.96 to 0.99 for X. laevis and 0.94 to 0.98 for X. tropicalis. Error bars represent standard deviation (SD).

(C) X. laevis and X. tropicalis extracts were mixed as indicated, and nuclear size was measured at 90 min. One representative experiment of three is shown, and

error bars represent SD.

(D) Nuclei were assembled using the indicated source of extract and sperm, and nuclear size was measured at 90 min. One representative experiment of three is

shown, and error bars represent SD.

(E) GFP-NLSwas added to nuclei at 30min, and imageswere acquired live at 30 s intervals with the same exposure time. Nuclear GFP-NLS fluorescence intensity

per unit area was measured at each time point, averaged for five nuclei from each extract, and normalized to 1.0 (arbitrary units). Error bars represent SD. Repre-

sentative images are at 70 min. Scale bar, 20 mm.

(F) IBB-coated Qdots were added to nuclei at 30min, and imageswere acquired live at the indicated time points for at least 30 nuclei with the same exposure time.

Nuclear Qdot fluorescence intensity per unit area was calculated, averaged, and normalized to 1.0 (arbitrary units). Error bars represent SD. One representative

experiment of three is shown. Representative images are at 75 min. Scale bar, 20 mm.

See also Figure S1 and Movie S1.
(Figure 2). The marked differences in importin a2 and Ntf2

concentrations led us to investigate their relevance to nuclear

scaling between the two species.

Importin a2 Increases Nuclear Size and Import
First, we altered importin a levels. Endogenous importin a must

be phosphorylated to diffuse freely in Xenopus cytoplasm while

the unphosphorylated form binds large membrane stores

present in egg extracts (Hachet et al., 2004), possibly rendering

it unable to engage in nucleocytoplasmic transport. We there-

fore tested the effects of a phosphomimetic importin a-E con-

taining six glutamate point mutations (Hachet et al., 2004), as
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well as in vitro phosphorylated importin a (Hachet et al.,

2004). When added to nuclei assembled in X. tropicalis egg

extract, both of these proteins increased NE surface area,

whereas unphosphorylated importin a had little effect (Fig-

ure S3A). The maximal change in nuclear size occurred in the

range of 0.8–1 mM added importin a-E, increasing NE surface

area 1.5- to 1.7-fold (Figure 3A). Importin a-E likely affects

nuclear size by modulating import because its addition

increased nuclear accumulation of GFP-NLS and addition of

import-defective importin a-E lacking the N-terminal importin

b-binding (IBB) domain failed to increase nuclear size (Figure 3B

and Figure S3A).
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Figure 2. Importin a2 and Ntf2 Levels Differ in X. laevis and X. tropicalis

(A) 25 mg of protein from three different X. laevis and X. tropicalis egg extracts was separated by SDS-PAGE, transferred to nitrocellulose, and probed with anti-

bodies against the indicated proteins. Values below each set of three lanes represent relative protein amounts (mean ± SD, n = 3) quantified by infrared fluores-

cence. Absolute concentrations were determined by comparing band intensities to known concentrations of recombinant importin a2 or Ntf2 on the same blot.

Two different antibodies against importin a2 and Ntf2 showed similar differences between the two species.

(B) Nuclei at 80 min were processed for immunofluorescence using the same antibodies as in (A), and representative images are shown. For a given antibody,

images were acquired with the same exposure time and scaled identically. Scale bar, 20 mm.

(C) Quantification of nuclei displayed in (B). Nuclear fluorescence intensity per unit area was calculated for at least 50 nuclei per condition, averaged, and normal-

ized to 1.0 (arbitrary units). Error bars represent SD. Two different antibodies against importin a2 and Ntf2 showed similar differences between the two species.

See also Figure S2.
In complementary experiments, importin a2 was partially

immunodepleted from X. laevis extracts. Depending on the

extract, 0.5–1 mM importin a2 was depleted, and no other

proteins were stoichiometrically codepleted (data not shown).

Compared to mock-depleted extracts, lowering the importin

a concentration reduced nuclear size and GFP-NLS import,

and both effects could be rescued by addition of importin a-E

but only if it was import competent with an intact IBB domain

(Figure 3C). Addition of excess importin a-E to X. tropicalis nuclei

(Figure 3A) or X. laevis nuclei (data not shown) slightly reduced

nuclear size while minimally affecting bulk import.

To address the specificity of the importin a effect and to deter-

mine whether other import factors contribute to nuclear sizing,

we added importin a-E, importin b, and Ran alone and in combi-

nation to nuclei assembled in X. tropicalis extract. At 0.8 mM,

importin b negatively affected nuclear size, Ran had no effect,

and no combination with importin a-E increased nuclear size to

a greater extent than importin a-E alone (Figure S3B). At 4 mM,

all three proteins individually reduced nuclear size, and no

combination increased size (Figure S3B). We also investigated

a different Ran-regulated nucleocytoplasmic shuttling pathway

that utilizes the transport receptor transportin. Addition of re-

combinant transportin to X. tropicalis nuclei negatively affected

nuclear size at all concentrations tested, likely by interfering

with other Ran-mediated transport (Figure S3C). Furthermore,

transportin levels were indistinguishable between X. laevis and

X. tropicalis (Figure S2), as was nuclear import of YFP-
M9-CFP, a transportin cargo (Figure S3D). We conclude that

nuclear scaling acts predominantly through the NLS-mediated

import pathway, in particular through importin a.

Ntf2Decreases Nuclear Size and Import of LargeCargos
Although importin a contributes to nuclear scaling, its effect was

insufficient to explain the average 2.3-fold size difference

between X. laevis and X. tropicalis nuclei. Because Ntf2 was

the only other import factor we identified that differed signifi-

cantly between the two extracts (Figure 2), being more abundant

in X. tropicalis, recombinant Ntf2 was titrated into X. laevis

extract. Increasing the Ntf2 concentration increased nuclear

Ran, consistent with functional Ntf2 directing Ran import,

and nuclear size was concomitantly reduced (Figure 3D). When

1.6 mM Ntf2 was added to X. laevis extract to approximate the

total Ntf2 concentration in X. tropicalis, nuclear Ran staining

increased to nearly the X. tropicalis level, but NE surface area

was not fully reduced to that of X. tropicalis. Intriguingly,

GFP-NLS import did not correlate with nuclear size. In fact, addi-

tion of Ntf2 slightly increased nuclear GFP-NLS levels, perhaps

due to the higher nuclear Ran concentration (Figure 3D). This

result suggested that Ntf2 was not affecting nuclear size by

altering the global NLS import rate. Instead, increasing the Ntf2

concentration in X. laevis reduced the amount and rate of Qdot

import (Figures 3D and 3E). Because Ntf2 binds proteins of the

NPC (Clarkson et al., 1996), higher Ntf2 levels may occlude the

pore, potentially impeding import of larger particles like Qdots,
Cell 143, 288–298, October 15, 2010 ª2010 Elsevier Inc. 291
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Figure 3. Importin a2 and Ntf2 Regulate Nuclear Size and Import

(A) Nuclei were assembled in X. tropicalis extract, and at 40 min, importin a-E was added at the indicated concentrations in addition to GFP-NLS. At 80 min,

images for at least 50 nuclei per condition were acquired with the same exposure time, and NE surface area was quantified, averaged, and normalized to the

buffer control. Error bars represent standard error (SE). Scale bar, 20 mm.

(B) Experiments were performed as in (A) with a fixed concentration (0.8 mM) of added importin a-E or a mutant version lacking the importin b-binding domain

(DIBB). Average fold change from the buffer control and SD are shown (n = 4 extracts). TheDIBBmutant did not have a strong dominant-negative effect on import

because it was added at a concentration below the endogenous importin a level.

(C) Nuclei were assembled in X. laevis extract mock and partially immunodepleted of importin a2 (0.5–1 mMdepleted). Kinetics of nuclear assembly were similar in

the two extracts. At 40 min, indicated proteins were added at 1 mM as well as GFP-NLS. At 80 min, images for at least 50 nuclei per condition were acquired with

the same exposure time, and NE surface area and nuclear GFP-NLS fluorescence intensity were quantified. Average fold change from themock depletion and SD

are shown (n = 4 extracts).

(D) Recombinant Ntf2 was titrated into X. laevis extract prior to nuclear assembly. Initial kinetics of nuclear assembly were not altered by supplemental Ntf2.

GFP-NLS or IBB-coated Qdots were added at 30 min. At 80 min, nuclei were processed for immunofluorescence with an antibody against Ran, and images

for at least 50 nuclei per condition were acquired with the same exposure time. NE surface area was quantified from Ran-stained nuclei, averaged, and normal-

ized to the buffer control. Nuclear fluorescence intensities for Qdots, GFP-NLS, and Ran were similarly processed. Error bars represent SE. One representative

experiment of three is shown. For each parameter, the difference between 0 and 1.6 mM added Ntf2 was statistically significant by Student’s t test (p < 0.005).

(E) Experiments similar to (D) were performed with a fixed Ntf2 concentration (1.6 mM) and over time. Nuclear Qdot or GFP-NLS fluorescence intensities for at

least 50 nuclei per time point were averaged and normalized to 1.0 (arbitrary units). Error bars represent SE. At 95 min, the difference in Q dot import between

0 and 1.6 mM added Ntf2 was statistically significant by Student’s t test (p < 0.001).

(F) Nuclei were assembled in X. tropicalis extract supplemented with anti-Ntf2 or IgG antibodies (0.1 mg/ml). At 30 min, nuclear assembly was similar in the two

conditions, and Qdots or GFP-NLS was added. At 80 min, immunofluorescence for Ran was performed, and nuclear parameters were quantified as in (D).

Average fold change from the IgG control and SD are shown (n = 6 extracts).

See also Figure S3.
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Figure 4. Importin a2 and Ntf2 Are Sufficient to Account for Interspecies Nuclear Scaling by Regulating LB3 Import
(A) X. tropicalis nuclei were assembled in the presence of anti-Ntf2 or IgG control antibodies (0.1mg/ml) and 0.14 mMGFP-LB3 as indicated, and at 40min, 0.8 mM

importin a-E was added to some reactions. LB3 was visualized in nuclei by immunofluorescence at 80 min, and images for at least 50 nuclei per condition were

acquired with the same exposure time. NE surface area and LB3 fluorescence were quantified. Average fold change from the buffer control and SD are shown

(n = 5 extracts). Scale bar, 20 mm.

(B) Wild-type and mutant GFP-LB3 proteins, 13 Npl (nucleoplasmin), and GFP-NLS were added at 0.14 mM to X. tropicalis extract. For 53 Npl, 0.7 mMNpl was

added. Nuclei were visualized at 75 min by immunofluorescence using an antibody against Ran. NE surface area was calculated for at least 50 nuclei. Average

fold change from the buffer control and SD are shown (n = 3 extracts). The K31Q mutant had a dominant-negative effect on the structure of the lamina, as nuclei

were smaller and appeared crumpled, whereas the R385P mutant did not efficiently assemble into the lamina.

(C) Nuclei were visualized by immunofluorescence with an antibody against Xenopus LB3. Images for at least 50 nuclei at each time point were acquired with the

same exposure time. Fluorescence intensity was quantified, averaged, and normalized to 1.0 (arbitrary units). Error bars represent SD. One representative exper-

iment of three is shown. The Western blot was performed as in Figure 2A using an antibody against Xenopus LB3.

(D) Nuclei were assembled in X. tropicalis extract mock- and immunodepleted of LB3 (0.1 mMdepleted). Ntf2 antibodies, importin a-E, and GFP-LB3 were added

to LB3-depleted extract in the same manner as in (A) with the exception that GFP-LB3 was added at 0.2 mM. At 80 min, nuclei were stained for Ran by immu-

nofluorescence, images for at least 50 nuclei per condition were acquired, and NE surface area was quantified. Average fold change from themock depletion and

SD are shown (n = 4 extracts). Scale bar, 20 mm.

See also Figure S4 and Table S1.
but not small cargos like GFP-NLS. Consistent with this model,

reducing the effective Ntf2 concentration in X. tropicalis by anti-

body inhibition (Figure 3F) or Ntf2 depletion (Figure S3E)

conferred on these nuclei the ability to import Qdots without

significantly altering GFP-NLS import. Concomitantly, NE

surface area increased 1.4- to 1.5-fold, and nuclear Ran staining

decreased on average 11% (Figure 3F and Figure S3E). Taken

together, these data are consistent with Ntf2 regulating nuclear

size by modulating the import rates of large cargos that presum-

ably contribute to nuclear sizing.

Importin a2 and Ntf2 Scale Nuclear Size through Lamin
B3 Import
Because both addition of importin a and inhibition of Ntf2 inX. tro-

picalis increasednuclear size,we testedwhether combining these

manipulations was sufficient to convert X. tropicalis nuclei to the
size ofX. laevisnuclei. Averagedover five experiments,X. tropica-

lisNE surface area increased 2.2-fold with supplemental importin

a-EandNtf2 inhibition (Figure4A),nearlyequivalent to theaverage

2.3-fold interspecies nuclear size difference (Figure 1B).

Importin a and Ntf2 could control nuclear size by regulating

either bulk import of NLS cargos or import of specific structural

components of the nucleus. To differentiate between these

possibilities, we supplemented X. tropicalis extract with different

NLS cargos to specifically increase their import and assessed

the effect on nuclear size. Addition of nucleoplasmin (Npl) or

GFP-NLS, both importin a cargos, did not significantly alter

nuclear size over a wide range of concentrations (Figure 4B, Fig-

ure S4A, and data not shown). In contrast, recombinant lamin B3

(LB3) titrated into X. tropicalis extract increased NE surface area

1.7-fold when added at an optimal concentration of 0.14 mM

(Figure 4B and Figure S4A). LB3 is the major Xenopus egg lamin
Cell 143, 288–298, October 15, 2010 ª2010 Elsevier Inc. 293



that is required for NE growth (Jenkins et al., 1993; Newport

et al., 1990) and contains a classical NLS (Loewinger and

McKeon, 1988). At higher concentrations of LB3, nuclear size

was reduced and LB3 puncta were visible, likely representing

the formation of aggregates unable to assemble into a functional

lamina (Figure S4A). Addition of two LB3 point mutants previ-

ously shown to be defective for lamina assembly (Heald and

McKeon, 1990), or LB3 with a mutated NLS, failed to increase

nuclear size (Figure 4B). These data indicate that the concentra-

tion of the specific cargo LB3 can determine nuclear size, depen-

dent on its import and functional assembly.

Because LB3 concentration can affect nuclear size, we

compared LB3 import and levels in the two Xenopus extracts.

Although the rate of nuclear LB3 accumulation in X. tropicalis

extract was 35% the rate in X. laevis, the LB3 concentration

was �2-fold higher in X. tropicalis (Figure 4C), consistent with

the X. laevis egg containing 2.1-fold more total LB3 in

a 4.3-fold larger volume (Table S1). Nuclear size differences in

these two extracts therefore correlate not with lamin concentra-

tion but, rather, with the rate of lamin import as regulated by

importin a and Ntf2. Consistent with this interpretation, upon

addition of importin a and inhibition of Ntf2 in X. tropicalis that

led to increased LB3 import, supplemental LB3 did not further

increase nuclear size (Figure 4A and Figures S4B and S4C).

Conversely, Ntf2 reduced import of LB3 in a concentration-

dependent manner in X. laevis (Figure S4D). Furthermore,

addition of importin a and/or Ntf2 antibodies to LB3-depleted

X. tropicalis extracts had little effect on nuclear size

(Figure 4D), even though these nuclei were still import competent

for GFP-NLS (data not shown). Taken together, these data argue

that differences in importin a and Ntf2 concentrations can

account for nuclear scaling between X. laevis and X. tropicalis

and that they control nuclear size by regulating import of LB3

and possibly other NLS cargos that require an intact lamina to

function.

Nuclear Scaling during Xenopus Development
Is Also Regulated by Importin a

To investigate whether mechanisms of interspecies nuclear

scaling also operate during development, we turned to X. laevis

embryos. Upon fertilization, the 1 mm diameter egg undergoes

12 rapid, synchronous cell divisions (each�30min) with no over-

all growth, generating about four-thousand 50 mm cells at the

midblastula transition (MBT) or stage 8 (Nieuwkoop and Faber,

1967). After the MBT, zygotic transcription initiates, cells

become motile, and cell divisions slow and lose synchrony. As

the embryo proceeds through gastrulation, further reductions

in cell size occur, reaching 12 mm in the tadpole (Montorzi

et al., 2000). Xenopus embryogenesis therefore offers a robust

model for developmental scaling.

Nuclear sizewas quantified inX. laevis embryos by immunoflu-

orescence (Figure 5A). Because nuclei continually expand in

early embryos (Figure S1B), we compared different stage

embryos arrested for 60 min. Though nuclear sizes were similar

during the first few cell divisions after fertilization, NE surface

area became progressively smaller after stage 5 (16 cell) and

through stage 10 (gastrulation), reaching a relatively constant

size in stage 12 and later embryos. Measurements made in situ
294 Cell 143, 288–298, October 15, 2010 ª2010 Elsevier Inc.
were comparable (Figure S5A). A similar trend in nuclear size

changes was observed in X. tropicalis embryos except NE

surface area was on average 51% less than X. laevis at equiva-

lent developmental stages (Figure S5B). Halving the DNA

content in X. laevis embryonic nuclei only reduced NE surface

area by 10%, demonstrating that, like egg cytoplasm, embryo

cytoplasm determines nuclear size to a greater extent than

ploidy (Figure S5C).

To investigate whether nucleocytoplasmic transport also

regulates nuclear scaling during early X. laevis development,

we examined the levels of transport factors. Strikingly, total

importin a2 levels dropped 47% by stage 8 (MBT) relative to

earlier stages and a further 30% by stage 12 (Figure 5B). In

contrast, importin a1, importin a3, Ran, and Ntf2 concentrations

remained relatively constant (Figure 5B and Figure S5D). At

stage 8, concomitant reductions in GFP-NLS import capacity

and nuclear importin a2 and Ntf2 staining occurred, whereas,

at stage 12, import was reduced further but with no significant

change in nuclear importin a2 and Ntf2 (Figures 5C and 5D).

To determine whether importin a directly modulates nuclear

size during development, fertilized one-cell X. laevis embryos

were injected with mRNA encoding importin a-E and were

allowed to develop to later stages. Exogeneous expression of

importin a-E to 0.6 mM ± 0.2 mM (mean ± SD, n = 5) significantly

increased nuclear size in stage 7 and stage 8 embryos to the

range observed in early stage embryos but had a lesser effect

at stage 9 (Figure 5E). Increasing nuclear size in embryos did

not affect their grossmorphology or viability. Addition of importin

a-E to embryo extracts similarly increased nuclear size

(Figure S5E) and also increased GFP-NLS import (data not

shown), whereas Ntf2 addition had little effect (data not shown).

Of interest, we observed that nuclei in stage 7 and stage 8

embryos reached a steady-state size (Figure 5F), unlike earlier

in development (Figure S1B). Overexpression of importin a-E in

stage 7 embryos led to continuous nuclear expansion similar

to that observed in early stages, whereas nuclei in stage 8

embryos grew larger but attained a new equilibrium size,

suggesting that other factors became limiting at the MBT

(Figure 5F). Taken together, these data demonstrate that impor-

tin a is one factor that mediates nuclear scaling during X. laevis

embryogenesis, affecting both the rate of nuclear expansion in

early embryos and the steady-state nuclear size in later

embryos.

DISCUSSION

We investigated how nuclear size is regulated in two related but

different sized frog species as well as during early frog develop-

ment, two physiological examples of nuclear scaling. Using

Xenopus egg extracts to examine intrinsic mechanisms of

nuclear scaling in the absence of the cell showed that titratable

cytoplasmic factors regulate nuclear size to a greater extent

than DNA content and that differences in the concentrations of

importin a and Ntf2 are sufficient to explain most of the observed

interspecies nuclear scaling by altering nuclear import. Importin

a, but not Ntf2, also plays a role in nuclear scaling during

embryogenesis in X. laevis. Whereas nucleocytoplasmic trans-

port was known to be required for NE growth (D’Angelo et al.,
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Figure 5. Importin a2 Regulates X. laevis Developmental Nuclear Scaling

(A) Different stage X. laevis embryos were arrested with cycloheximide for 60 min. Nuclei were isolated from embryo extracts and visualized by immunofluores-

cence using mAb414. Scale bar, 20 mm. For the graph, NE surface area was quantified for at least 50 nuclei from each stage. Error bars represent SD.

(B) 25 mg of protein from different stage embryo extracts was analyzed by western blot, as in Figure 2A.

(C) To assess nuclear import, GFP-NLS (1 mM) was added to embryo extracts, and images of unfixed nuclei were acquired 30 min later with the same exposure

time. Immunofluorescence was performed on fixed embryonic nuclei, and images were acquired with the same exposure time. Scale bar, 20 mm.

(D) Quantification of (C). Nuclear fluorescence intensity per unit area was calculated for at least 50 nuclei per stage, averaged, and normalized to 1.0 (arbitrary

units). Error bars represent SD.

(E) Single-cell fertilized X. laevis embryos were injected with 1 ng importin a-E mRNA or water as control. Nuclei were isolated and quantified as in (A), except that

an antibody against Xenopus LB3was used for immunofluorescence. One representative experiment of two is shown for each stage, and error bars represent SD.

(F) Experiments similar to (E) were performed except that embryos were arrested for different lengths of time in cycloheximide. Error bars represent SE. Repre-

sentative stage 7 nuclei at 120 min are shown for control (bottom) and importin a-E (top) injected embryos. Scale bar, 20 mm.

See also Figure S5.
2006; Neumann and Nurse, 2007; Newport et al., 1990), our data

show that titrating nuclear import concomitantly scales nuclear

size and that this mechanism can account for how the size of

the nucleus is controlled in two frog species and during develop-

ment.

Importin a mediates nuclear scaling by regulating overall

import of NLS cargos, consistent with computer modeling and

cell culture experiments showing that importin a concentration

positively correlates with the rate and steady-state level of
nuclear import (Görlich et al., 2003; Riddick and Macara, 2005,

2007; Smith et al., 2002). However, our results indicate a more

complex relationship between nuclear import factors and

nuclear size. For example, we observe that increasing importin

a concentration more than 3-fold over normal levels reduces

nuclear size (Figure 3A and Figure S3B), probably because

elevated lamin B3 import that occurs under these conditions

(data not shown) is detrimental to nuclear assembly

(Figure S4A). Ntf2 has also been implicated as a positive
Cell 143, 288–298, October 15, 2010 ª2010 Elsevier Inc. 295



regulator of both Ran and bulk import (Riddick and Macara,

2005, 2007). Though the Ntf2-Ran relationship holds true in our

experiments, we find that increased Ntf2 slows import of large

cargos such as Qdots, but not smaller proteins like GFP-NLS.

Because it associates with the NPC, Ntf2 could influence import

rates based on cargo size (Clarkson et al., 1996). In fact, studies

of X. laevis oogenesis revealed that late-stage oocytes acquire

the ability to import large nucleoplasmin-coated gold particles

concomitantly with a reduction in Ntf2 levels (Feldherr et al.,

1998). Furthermore, addition of Ntf2 to those oocytes reduced

import of gold particles, similar to our observation that increasing

the Ntf2 concentration in X. laevis reduced Qdot import

(Figure 3D). It is worth noting that supplementing X. laevis extract

with Ntf2 up to the X. tropicalis level slowed but did not block

Qdot import, suggesting that other interspecies NPC differences

may affect cargo size-dependent import.

Nuclear size appears to be determined by import of specific

NLS cargos, not by mass action transport. LB3 was a good

candidate because its import is importin a-mediated, it is

required for NE expansion (Jenkins et al., 1993; Newport et al.,

1990), and its overexpression induces proliferation of nuclear

membrane (Goldberg et al., 2008; Prüfert et al., 2004). Addition

of LB3, but not Npl or GFP-NLS, to X. tropicalis egg extract

increased nuclear size, but not to the size of X. laevis, suggesting

that additional NLS proteins are involved. Potential nuclear sizing

cargos include inner nuclear membrane proteins that interact

with the lamina, like the lamin B receptor and LAPs, as well as

SUN and KASH family proteins that span the NE and mediate

interactions between the nucleus and cytoskeleton. Consistent

with this idea, NPC manipulations that increase translocation

of integral membrane proteins to the inner NE correlate with

increased nuclear size (Theerthagiri et al., 2010). The fact that

Qdot import positively correlates with nuclear size indicates

that cargos important for scaling are relatively large. Although

lamin monomers are only 70 kD, they minimally form tetramers

made up of two dimers, each composed of 50 nm elongated

coiled coils (Aebi et al., 1986; Heitlinger et al., 1991). Because

particles as large as 20 megadaltons can transit the X. laevis

NPC, LB3 may be imported as large oligomers.

We discovered some striking similarities between interspe-

cies nuclear size regulation and nuclear scaling during Xenopus

embryogenesis. Reductions in nuclear size during development

were accompanied by diminishing import capacity for NLS

cargos, and scaling of nuclear size at the MBT correlated

with a drop in total and nuclear importin a levels. Increasing

the concentration of importin a in embryos increased nuclear

size without noticeably affecting development, suggesting

that nuclear size per se does not regulate early developmental

transitions. Thus, conserved importin a-mediated transport

mechanisms regulate nuclear size both during development

and between frog species, but distinct and yet uncharacterized

mechanisms also contribute to nuclear scaling in Xenopus

embryogenesis.

Our data suggest two nuclear sizing regimes determined by

either reaction rates or abundance of NE components. The egg

is stockpiled in order to form �4000 MBT nuclei, and therefore

these components are not limiting in egg extracts and early

embryos. In this regime, nuclear size is determined by rates of
296 Cell 143, 288–298, October 15, 2010 ª2010 Elsevier Inc.
NE expansion and nuclear import in conjunction with cell-cycle

timing. In contrast, MBT nuclei reach a steady-state size when

import and NE components like lamins are no longer in excess.

Consistent with this idea, increasing importin a expression in

MBT embryos caused nuclei to reach a new steady-state size

(Figure 5F) at which lamins became limiting because coexpress-

ing importin a and LB3 further augmented nuclear size (data not

shown). Of interest, the amount of LB3 loaded into the eggs of

each species correlates well with the total NE surface area at

the MBT, with X. laevis containing 2.1-fold more total LB3 than

X. tropicalis at the onset of development and 2-fold more NE at

the MBT when transcription starts (Table S1). Because the ratio

of NE surface area to embryo volume at this transition is

2.1-fold higher in the smaller X. tropicalis species (Table S1),

the starting LB3 concentration in the egg is also about 2-fold

higher (Figure 4C). ThusXenopus eggs are loadedwith the proper

amount of LB3, and presumably other nuclear envelop compo-

nents, so that they are not limiting during the rapid divisions of

early development.

Our results are consistent with multiple mutually nonexclusive

models of organelle size control. Considering a static model,

importin a and Ntf2 levels limit nuclear import of LB3, thereby

constraining the rate at which nuclei expand. However, dynamic

processes must balance import-mediated growth. Nuclear size

is a regulated cellular parameter that depends on tissue type, de-

velopmental state as demonstrated during Xenopus embryogen-

esis, and species as shown comparing X. laevis and X. tropicalis,

in which nuclear size differences have evolved by fine-tuning the

expression of nuclear import factors. A fundamental question is

why nuclear size is regulated. Changes in the dimensions and

morphology of the nucleus are associated with pathologies,

including cancer (Webster et al., 2009; Zink et al., 2004), but dis-

secting the cause and effect relationship between nuclear size

and disease state is difficult. Understanding the role that nuclear

import plays in scaling nuclear size and identifying relevant

factors and their mechanisms of action provide an avenue to

directly manipulate nuclear size in the context of normal and

diseased cells in order to examine the functional consequences.
EXPERIMENTAL PROCEDURES

Xenopus Egg Extracts and Nuclear Assembly

X. laevis (Maresca and Heald, 2006) and X. tropicalis (Brown et al., 2007) meta-

phase-arrested egg extracts andXenopus sperm (Murray, 1991) weremade as

previously described. The standard nuclear assembly reaction was 25 ml fresh

extract, 100 mg/ml cycloheximide, 1000 Xenopus sperm per ml, and 0.5 mM

CaCl2. X. laevis sperm was used in all experiments except Figure 1D, in

which X. tropicalis sperm was used, as indicated. Reactions were

incubated at 19�C –22�C and import-competent nuclei generally formedwithin

30–40 min.

To monitor nuclear import, GFP-NLS (1 mM), YFP-M9-CFP (1 mM), or IBB-

Qdots (10 nM) were added to nuclei. IBB-Qdots were prepared by mixing

20 mM biotin-labeled IBB-CFP (a gift from Alan Lowe and Jan Liphardt)

with 1 mM Qdot 605 streptavidin conjugate (Invitrogen) at a 1:1 ratio and

incubating on ice 15 min. We also examined import of three smaller IBB-

Qdots using Qdots 525, 565, and 585 streptavidin conjugates (Invitrogen),

finding that all three were imported into X. laevis and X. tropicalis nuclei

(data not shown).

Immunodepletions and recombinant proteins are detailed in the Extended

Experimental Procedures. Proteins and antibodies were dialyzed into XB



(100mMKCl, 1mMMgCl2, 0.1 mMCaCl2, 50mM sucrose, and 10mMHEPES

[pH7.7]) and added to extracts prior to nuclear assembly, except for importin a,

whichwas dialyzed into 300mMKCl, 10mMMgCl2, and 10mMHEPES (pH7.8)

and added to preformednuclei. Total volume of additionwas less than 10% the

reaction volume, and buffer and IgG controls were performed. Reactions were

allowed to proceed to 75–90 min, as nuclear size at these time points was

similar to the size of nuclei in early stage embryos, thus providing a physiolog-

ically relevant situation for comparing nuclear size changes.

Xenopus Embryos and Extracts

Xenopus embryos were obtained as previously described (Grammer et al.,

2005; Sive et al., 2000), and details on how they were generated and injected

are in the Extended Experimental Procedures. Embryos were arrested in late

interphase with 150 mg/ml cycloheximide for 60min unless indicated otherwise

(Lemaitre et al., 1998), washed several times in ELB (250 mM sucrose, 50 mM

KCl, 2.5 mM MgCl2, and 10 mM HEPES [pH 7.8]) containing LPC (10 mg/ml

each leupeptin, pepstatin, chymostatin), cytochalasin D (100 mg/ml),

and cycloheximide (100 mg/ml), packed in a tabletop centrifuge at 200 g for

1 min, crushed with a pestle, and centrifuged at 10,000 3 g for 10 min at

16�C. The cytoplasmic extract containing endogenous embryonic nuclei

was supplemented with LPC, cytochalasin D (20 mg/ml), cycloheximide

(100 mg/ml), and energy mix (3 mM creatine phosphate, 0.4 mM adenosine

triphosphate, 40 mM EGTA, and 0.4 mM MgCl2).

Immunofluorescence and Microscopy

Nuclei in egg extracts or from embryos were mixed with 20 volumes fix buffer

(ELB, 15% glycerol, 2.6% paraformaldehyde) for 15 min at room temperature,

layered over 5 ml cushion buffer (XB, 200 mM sucrose, 25% glycerol), and

spun onto 12 mm circular coverslips at 1000 3 g for 15 min at 16�C. Nuclei
were postfixed in coldmethanol for 5min and rehydrated in PBS-NP40. Cover-

slips were blocked with PBS-3% BSA overnight at 4�C, incubated at room

temperature for 1 hr each with primary and secondary antibody diluted in

PBS-BSA followed by 5 mg/ml Hoechst, mounted in Vectashield (Vector Labo-

ratories), and sealed with nail polish. Antibodies are described in the Extended

Experimental Procedures.

Images were acquired with an Olympus BX51 fluorescence microscope,

403 objective, and Hamamatsu Orca II cooled CCD camera. Nuclear

cross-sectional areas were measured from thresholded images in Meta-

Morph (Molecular Devices) and multiplied by 4 to estimate total NE surface

area. To validate this method for quantifying nuclear size, imaging was per-

formed using a Marianas Spinning Disk Confocal microscope (Intelligent

Imaging Innovations). For a given nucleus, 100 confocal sections were

acquired, and nuclear circumference for each slice was measured in ImageJ

(NIH). NE surface area was calculated as the sum of these circumferences

multiplied by the slice thickness (0.2 mm), and these values agreed within

2% of estimates from the cross-sectional area (data not shown). We therefore

used the cross-sectional area method to estimate NE surface area because it

facilitated the acquisition of data from large numbers of nuclei. For fluores-

cence intensity measurements, images were acquired with the same expo-

sure time, and a region of representative background fluorescence was

used for background correction. Total integrated intensity and nuclear area

were quantified from thresholded images (Metamorph) and used to calculate

intensity per unit area. Statistical methods are described in the figure

legends.

Western Blots

Egg extract protein concentrations were measured by Bradford assay (Bio-

rad). The average total protein concentration was 56 ± 3 mg/ml in X. laevis

and 52 ± 4 mg/ml in X. tropicalis (mean ± SD, n = 6). 25 mg protein from three

different X. laevis and X. tropicalis extracts was separated by SDS-PAGE and

semi-dry transferred to nitrocellulose (Biorad). Blots were blocked with PBS-

5%milk, probed with primary and secondary antibodies (see Extended Exper-

imental Procedures) diluted in PBST-5% milk, and scanned on an Odyssey

Infrared Imaging System (LI-COR Biosciences). Band intensities were quanti-

fied using the Odyssey software. Western blots on different stage embryo

extracts were similarly performed.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, one table, and one movie and can be found with this article online at

doi:10.1016/j.cell.2010.09.012.
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