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42. Occupation number fluctuations in the free ideal Fermi- and Bose-gas (5 points)

The occupation number nα of a single-particle energy eigenstate α is a random number. Its expectation value is the Fermi or
Bose-distribution, 〈nα〉 = (eβ(εα−µ) ± 1)−1. Prove that its variance is given by σ2

nα = 〈nα〉
(
1∓ 〈nα〉

)
.

43. Bose-Einstein condensation in a harmonic trap (10 points)

In 1995 three groups of scientists managed to realize a Bose-Einstein condensate of ultra-dilute atomic gases: Eric Cornell
and Carl Wieman at JILA, Wolfgang Ketterle at MIT, and Randy Hulet at Rice. For this achievement, Cornell, Wieman, and
Ketterle jointly won the 2001 Nobel Prize in Physics. These scientists held the (bosonic) atoms to be condensed in an optically
generated harmonic trap—i. e., a potential of the form V (x, y, z) = 1
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)
. The particles are still non-

interacting, but this setup differs from the “free particles inside a box” situation we have studied in class. Here we want to see
how this changes the physics of Bose-Einstein condensation.

1. What are the single-particle energy eigenstates of this system? Write down the energy spectrum of the single-particle
Hamiltonian and—for later convenience—subtract away the irrelevant ground state energy.

2. As a useful result, which will save the day later, prove that 1
ex−1 =

∑∞
k=1 e−kx, as long as x > 0.

3. Bose-Einstein condensation happens if the total number N ′ of particles contained in all excited states is bounded from
above. Without using a continuum approximation, find an expression for N ′ and look for an upper bound by focusing on
the “best-case scenario” µ = 0. Why is this “best case”? You will end up with an unwieldy looking sum.

4. Rewrite the sum using the identity you proved in part (2), swap the two sums, sum up the inner one, and expand it for
large (!) temperatures (you may use a computer to do the latter). Now show that the leading order is

N ′ = ζ(3)

(
kBT

~ω

)3

+ O(T 2) with ω = (ωxωyωz)
1/3 . (1)

5. What is the Einstein temperature TE for this case? How is this different from what we found for the gas-in-a-box?

6. In the first successful experiment by Ketterle the harmonic trap was claimed to have frequencies ωx = 4681Hz, ωy =
1477Hz, and ωz = 2576Hz. They found Bose-Einstein condensation at about 2 µK. How many atoms should they have
had in the trap at that point? (Turns out, this expectation indeed agreed with independent measurements!)

44. Bose-Einstein condensation in a harmonic trap—finite size corrections (5 points)

Let us look a bit more closely at a simplified version of problem 43, namely the isotropic case ωx = ωy = ωz ≡ ω.

1. Show that continuing the series expansion that led to the answer for problem 43.4 leads to
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+ · · · (2)

But alas, this high temperature series expansion should strike you as a terrible disappointment. Why?

2. Boldly ignoring your perfectly reasonable anxieties, and taking only the first two terms in Eqn. (2), show that they predict
a slight downward shift of the Bose-Einstein transition temperature that vanishes in the limit N →∞ and is given by

Ttransition − TE

TE
= − α

N1/3
with α =

ζ(2)

2 ζ(3)2/3
≈ 0.7275 . (3)

Hint: There’s a cubic equation to be solved. Darn. But for largeN it suffices to solve this equation approximately. Hence,
look for a solution in the form x(N) = x(N =∞)− ε(N) and expand to linear order in ε.

3. For extra credit (3 points): Check whether the additional term improves the prediction of the ground state fraction by
numerically treating the case N = 1000. Plot the “exact” N0(T )/N together with the approximate answers from
problem 43.4 and 44.1. You will need to numerically find µ(N,T ) and use this to calculate the ground state occupancy.


