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35. Equivalent characterizations of pure quantum states (3 points)

If we have a normalized state vector |ψ〉 ∈ H , then the quantum state W = |ψ〉〈ψ| is pure: it obviously satisfies W = W 2.
Prove that the converse is also true: If a quantum state satisfies W = W 2, then there exists a vector |ψ〉 such that W = |ψ〉〈ψ|.
Hint: Start with the spectral expansion of W . What extra condition does W = W 2 impose on the expansion coefficients?

36. Equivalent characterizations of eigenstates (4 points)

If a quantum stateW is an eigenstate of an observableA, then measurements ofA in that state are sharp: σ2
A = 〈A2〉−〈A〉2 = 0.

But the converse also holds: σ2
A = 0⇒ AW = αW for some α ∈ R. Prove this in the special case where W is a pure state!

Hint: The probably quickest way to see this involves applying the Cauchy-Schwarz inequality to the vectors |ψ〉 and A|ψ〉.

37. Quantum fluctuations can only increase the free energy (4 points)

Consider the quantum mechanical one-particle Hamiltonian H(P,Q) = 1
2mP

2 + V (Q) and its classical analogue. In this
problem we want to prove the following inequality between the quantum and the classical free energy for this system:

Fclassical ≤ Fquantum . (1)

You will need to use (but not prove!) the so-called Golden-Thompson inequality, which states that for two selfadjoint operators
A and B, which don’t necessarily commute, we have Tr[eA+B ] ≤ Tr[eAeB ] (provided these traces also exist).
Hint: Express the trace in position space: Tr( · ) =

∫
dq 〈q| · |q〉. It will also be useful to recall that 〈q|p〉 = 1√

h
eipq/~.

38. A system of spin-1 particles on a lattice (4 points)

Consider a macroscopic crystal with a spin-1 quantum mechanical moment located on each of N atoms. Assume further that
we can represent the energy eigenvalues of the system with a Hamiltonian of the following form:

H = B

N∑
n=1

σn +D

N∑
n=1

σ2
n , (2)

where the σn can independently take on the values−1, 0, and +1, andB andD are constants representing an external magnetic
field and an internal “crystal field”, respectively. The entire system is in contact with a heat bath at temperature T .

1. Calculate the canonical partition function and the free energy of this system.

2. Calculate the magnetization per spin, m = 1
N

〈∑N
n=1 σn

〉
, and plot m(B) for selected values of βD.

39. Polylogarithms (5 points)

The quantum grand potential of ideal Bose and Fermi gases can be expressed analytically via special functions called “polylog-
arithms.” Before we do that in class, let’s first learn a bit more about them. The polylogarithm is defined as follows:

Lν(z) =
1

Γ(ν)

∫ ∞
0

dt
tν−1

z−1et − 1
z < 1 , ν > 0 . (3)

Prove that the polylogarithm has the following properties:

1. For ν > 1, we can rewrite it as Lν(z) = − 1

Γ(ν − 1)

∫ ∞
0

dt tν−2 log
(

1− z e−t
)

.

2. z
d

dz
Lν+1(z) = Lν(z).

3. For |z| ≤ 1 we also have Lν(z) =

∞∑
n=1

zn

nν
. (Hint: Rewrite parts of the definition (3) using a geometric series.)

4.
d

dz
Lν(z) > 0 and

d
dν

Lν(z) < 0. (The latter is true for all z, but it suffices if you prove it for positive z!)

5. Lν(0) = 0; Lν(1) = ζ(ν) (= Riemann zeta function); L0(x) =
x

1− x
; L1(x) = − log(1− x).


