33-765 — Statistical Physics

Department of Physics, Carnegie Mellon University, Spring Term 2020, Deserno

Problem sheet \#9

33. Statistical Physics of the N-dimensional quadratic Hamiltonian (12 points)

Consider a phase space with N degrees of freedom $\left\{x_{i}\right\}_{i=1, \ldots, N}$ and on it a quadratic Hamiltonian

$$
H=\frac{1}{2} \boldsymbol{x}^{\top} \mathbf{K} \boldsymbol{x} \quad, \quad \text { or in components: } \quad H=\frac{1}{2} \sum_{i, j=1}^{N} x_{i} K_{i j} x_{j} \stackrel{!}{=} \frac{1}{2} x_{i} K_{i j} x_{j} \quad \text { (Einstein summation convention!), }
$$

where the "kernel" K is symmetric and positive definite. To de-clutter the problem, we will ignore the beauty factor $\frac{1}{N!h^{N}}$.

1. Show that the canonical partition function is given by $Z:=\operatorname{Tr} \mathrm{e}^{-\beta H}:!=\int \mathrm{d}^{N} x \mathrm{e}^{-\frac{1}{2} \beta x_{i} K_{i j} x_{j}}=\left(\operatorname{det} \frac{\beta \mathrm{K}}{2 \pi}\right)^{-1 / 2}$.

Hint: transform to new coordinates $\boldsymbol{y}=T \boldsymbol{x}$, or $y_{i}=T_{i j} x_{j}$ in which K is diagonal! What key property does T have?
2. Starting with the result from problem 31.1, show that the equipartition theorem in this case can be written as

$$
\langle\boldsymbol{x} \otimes \boldsymbol{x}\rangle \equiv\left\langle\boldsymbol{x} \boldsymbol{x}^{\top}\right\rangle=k_{\mathrm{B}} T \mathrm{~K}^{-1} \quad, \quad \text { or in components: } \quad\left\langle x_{i} x_{j}\right\rangle=k_{\mathrm{B}} T K_{i j}^{-1} .
$$

3. We now amend the Hamiltonian by a "source term", $H=\frac{1}{2} \boldsymbol{x}^{\top} \mathrm{K} \boldsymbol{x}-\boldsymbol{J} \cdot \boldsymbol{x}$. This Hamiltonian is still quadratic, but it takes its minimum not at $\boldsymbol{x}=\mathbf{0}$ but at some displaced value \boldsymbol{x}^{*}. Find it!
4. Use your result from the previous part to complete the square of this shifted quadratic matrix expression. In other words: write $H=\frac{1}{2}\left(x-x^{*}\right)^{\top} K\left(x-x^{*}\right)+$ stuff, and then find "stuff".
5. Show that for a general $\boldsymbol{J} \neq \mathbf{0}$ the partition function is given by $Z=\operatorname{Tr}^{-\beta H}=\left(\operatorname{det} \frac{\beta \mathrm{K}}{2 \pi}\right)^{-1 / 2} \mathrm{e}^{\frac{1}{2} \beta \boldsymbol{J}^{\top} \boldsymbol{K}^{-1} \boldsymbol{J}}$.
6. Prove that $\left\langle x_{i} x_{j}\right\rangle=\left\langle x_{i} x_{j}\right\rangle_{\boldsymbol{J}=\mathbf{0}}+\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle$. Hence, unsurprisingly, the covariance $\operatorname{Cov}\left(x_{i}, x_{j}\right)$ does not depend on \boldsymbol{J}.
7. Verifying that $k_{\mathrm{B}} T \frac{\partial}{\partial J_{k}} \mathrm{e}^{-\beta H}=x_{k} \mathrm{e}^{-\beta H}$, re-derive the equipartition theorem by continuing the following calculation:

$$
\operatorname{Cov}\left(x_{i}, x_{j}\right)=\left\langle x_{i} x_{j}\right\rangle_{J=0}=\left.\frac{\operatorname{Tr}\left(x_{i} x_{j} \mathrm{e}^{-\beta H}\right)}{\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)}\right|_{\boldsymbol{J}=\mathbf{0}}=\left.\frac{\operatorname{Tr}\left(\left(k_{\mathrm{B}} T \frac{\partial}{\partial J_{i}}\right)\left(k_{\mathrm{B}} T \frac{\partial}{\partial J_{j}}\right) \mathrm{e}^{-\beta H}\right)}{\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)}\right|_{\boldsymbol{J}=\mathbf{0}}=\cdots
$$

34. Statistical Physics of the double pendulum (8 points)

Consider a planar double pendulum, as sketched in the figure on the right: two masses m_{1} and m_{2}, two pendulum lengths l_{1} and l_{2}, and two degrees of freedom φ_{1} and φ_{2}.

1. Write down the Lagrangian $L\left(\varphi_{1}, \varphi_{2}, \dot{\varphi}_{1}, \dot{\varphi}_{2}\right)$ of the system.
2. Expand the Lagrangian to quadratic order. We will henceforth continue with this! Hint: adopting a vector-matrix notation will greatly simplify the rest of the problem!
3. Calculate the canonically conjugate momenta p_{1} and p_{2} belonging to φ_{1} and φ_{2}.
4. Find the Hamiltonian $H\left(\varphi_{1}, \varphi_{2}, p_{1}, p_{2}\right)$ of the system.
5. Show that the kinetic energy has the form $\frac{1}{2} \boldsymbol{x}^{\top} \mathrm{K} \boldsymbol{x}$ that we have discussed in the previous problem. What is \boldsymbol{x} and what is K ?
6. Calculate K^{-1}.
7. Finally, let's turn up the heat: if this system is in contact with a heat bath at temperature T, calculate the correlation coefficient between p_{1} and p_{2} !

