33-765 — Statistical Physics

Department of Physics, Carnegie Mellon University, Spring Term 2020, Deserno

Problem sheet #9

33. Statistical Physics of the N-dimensional quadratic Hamiltonian (12 points)

Consider a phase space with N degrees of freedom $\{x_i\}_{i=1,...,N}$ and on it a quadratic Hamiltonian

$$H = \frac{1}{2} \boldsymbol{x}^{\top} \mathsf{K} \boldsymbol{x} \quad , \quad \text{or in components:} \quad H = \frac{1}{2} \sum_{i,j=1}^{N} x_i K_{ij} x_j \stackrel{!}{=} \frac{1}{2} x_i K_{ij} x_j \quad (\text{Einstein summation convention!}) \, ,$$

where the "kernel" K is symmetric and positive definite. To de-clutter the problem, we will ignore the beauty factor $\frac{1}{N!h^N}$.

- 1. Show that the canonical partition function is given by $Z := \operatorname{Tr} e^{-\beta H} := \int d^N x \ e^{-\frac{1}{2}\beta x_i K_{ij} x_j} = \left(\det \frac{\beta \mathsf{K}}{2\pi} \right)^{-1/2}$. *Hint: transform to new coordinates* y = Tx, or $y_i = T_{ij} x_j$ in which *K* is diagonal! What key property does *T* have?
- 2. Starting with the result from problem 31.1, show that the equipartition theorem in this case can be written as

$$\langle \boldsymbol{x} \otimes \boldsymbol{x} \rangle \equiv \langle \boldsymbol{x} \, \boldsymbol{x}^{\top} \rangle = k_{\mathrm{B}} T \, \mathrm{K}^{-1}$$
, or in components: $\langle x_{i} x_{j} \rangle = k_{\mathrm{B}} T \, K_{ij}^{-1}$.

- 3. We now amend the Hamiltonian by a "source term", $H = \frac{1}{2} \mathbf{x}^{\top} \mathbf{K} \mathbf{x} \mathbf{J} \cdot \mathbf{x}$. This Hamiltonian is still quadratic, but it takes its minimum not at $\mathbf{x} = \mathbf{0}$ but at some displaced value \mathbf{x}^* . Find it!
- 4. Use your result from the previous part to *complete the square* of this shifted quadratic matrix expression. In other words: write $H = \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}^*)^\top \boldsymbol{K} (\boldsymbol{x} - \boldsymbol{x}^*) + stuff$, and then find "stuff".

5. Show that for a general $\boldsymbol{J} \neq \boldsymbol{0}$ the partition function is given by $Z = \text{Tr } e^{-\beta H} = \left(\det \frac{\beta \mathsf{K}}{2\pi} \right)^{-1/2} e^{\frac{1}{2}\beta \boldsymbol{J}^{\top} \mathsf{K}^{-1} \boldsymbol{J}}.$

- 6. Prove that $\langle x_i x_j \rangle = \langle x_i x_j \rangle_{J=0} + \langle x_i \rangle \langle x_j \rangle$. Hence, unsurprisingly, the covariance $\text{Cov}(x_i, x_j)$ does not depend on J.
- 7. Verifying that $k_{\rm B}T \frac{\partial}{\partial J_k} e^{-\beta H} = x_k e^{-\beta H}$, re-derive the equipartition theorem by continuing the following calculation:

$$\operatorname{Cov}(x_i, x_j) = \langle x_i x_j \rangle_{J=0} = \frac{\operatorname{Tr}(x_i x_j e^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})} \bigg|_{J=0} = \frac{\operatorname{Tr}\left(\left(k_{\mathrm{B}}T \frac{\partial}{\partial J_i}\right)\left(k_{\mathrm{B}}T \frac{\partial}{\partial J_j}\right) e^{-\beta H}\right)}{\operatorname{Tr}(e^{-\beta H})}\bigg|_{J=0} = \cdots$$

34. Statistical Physics of the double pendulum (8 points)

Consider a planar double pendulum, as sketched in the figure on the right: two masses m_1 and m_2 , two pendulum lengths l_1 and l_2 , and two degrees of freedom φ_1 and φ_2 .

- 1. Write down the Lagrangian $L(\varphi_1, \varphi_2, \dot{\varphi}_1, \dot{\varphi}_2)$ of the system.
- 2. Expand the Lagrangian to quadratic order. *We will henceforth continue with this! Hint: adopting a vector-matrix notation will greatly simplify the rest of the problem!*
- 3. Calculate the canonically conjugate momenta p_1 and p_2 belonging to φ_1 and φ_2 .
- 4. Find the Hamiltonian $H(\varphi_1, \varphi_2, p_1, p_2)$ of the system.
- 5. Show that the kinetic energy has the form $\frac{1}{2}x^{\top}K x$ that we have discussed in the previous problem. What is x and what is K?
- 6. Calculate K^{-1}
- 7. Finally, let's turn up the heat: if this system is in contact with a heat bath at temperature *T*, calculate the correlation coefficient between p_1 and p_2 !

