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29. Joule-Thomson coefficient for the van der Waals gas (6 points)

Let’s combine two subjects of inquiry: we know from class what the Joule-Thomson effect is, and we know that it is boring
for the ideal gas. But now we have an equation of state for a more realistic gas! What does this say about the Joule-Thomson
coefficient? We start by writing the van der Waals equation in rescaled (“reduced”, “critically scaled”) variables:

Vc = 3Nb , kBTc =
8a

27b
, Pc =

a

27b2
and hence define T̃ =

T

Tc
, P̃ =

P

Pc
, Ṽ =

V

Vc
. (1)

1. Show that in the reduced variables T̃ , Ṽ and Ñ the thermal equation of state reads (P̃ + 3 Ṽ −2)(3 Ṽ − 1) = 8 T̃ .

2. Find the relationship between P̃ and Ṽ (with T̃ eliminated!) that holds when the Joule-Thomson coefficient µJT = 0.
(Note: It turns out that for pressures below this so-called “inversion curve” P̃inv(Ṽ ), we have µJT > 0.)

3. Using the scaled thermal equation of state, show that the volume on the inversion curve satisfies Ṽ −1 = 3−
√

4T̃ /3.

4. Inserting this into P̃inv(Ṽ ), you get the inversion curve in the T̃ -P̃ diagram. Plot it! (The part under the curve is the
region that has a positive Joule-Thomson coefficient and will thus cool when subjected to the Joule-Thomson process.)

5. For hydrogen (H2) we have Tc = −240 ◦C and Pc = 12.7 atm, while for carbon dioxide (CO2) we have Tc = 31.2 ◦C
and Pc = 72.8 atm. Do these gases heat up or cool down under a throttled expansion at room temperature and pressure?

30. Ice skating (4 points)

First a few facts: (1) Icebergs consist of freshwater, and only about 10% of an iceberg is visible above the ocean’s surface. (2)
The density of sea water is about 1.025 g/cm3. (3) It takes about 334 kJ to melt one kilogram of ice (from just below freezing
to just above freezing). Now here comes the problem you will be able to solve using these data:

1. What is the slope of the melting curve in the T -P diagram of water at atmospheric pressure?

2. Most ice rinks operate at about −7 ◦C. How heavy would a person have to be so that the pressure exerted on the ice
through the blades of that person’s skates will pressure-melt the ice? (Estimate the area of an ice skate’s blade.)

31. Equipartition theorem (4 points)

Consider a Hamiltonian H({p, q}) on phase space. Let xi be any of the 6N coordinates, for instance, it could be p27,y or
q1673536,x. Let 〈 · 〉 denote the canonical average (i. e., the average over the canonical state Pcan({p, q})).

1. Prove that the following is true:
〈
xi

∂H
∂xj

〉
= kBT δij . (Hint: Parameter differentiation. Integration by parts.)

2. If the Hamiltonian contains a term Axn, and this is the only occurrence of x, prove that 〈Axn〉 = 1
n kBT .

3. For the “standard” kinetic energy, and pi one of the (scalar) momentum coordinates, prove that
〈 p2i
2m

〉
= 1

2 kBT .

32. Hypervirial and temperature (6 points)

Let Γ = {p1, . . . ,pN , q1, . . . , qN} denote a point in 6N -dimensional phase space and let B(Γ) be a vector field in phase
space. Let us furthermore denote the gradient (operator) in phase space by∇Γ =

(
∂

∂p1x
, ∂
∂p1y

, ∂
∂p1z

, ∂
∂p2x

, . . . . . . , ∂
∂qNz

)
.

1. Use Gauss’ theorem to argue that
∫

dΓ ∇Γ ·
{
B(Γ) e−βH(Γ)

}
= 0.

2. Prove the amazing fact that every choice of B leads to an expression for the temperature: kBT =
〈
B ·∇ΓH

〉/〈
∇Γ ·B

〉
.

3. For a standard Hamiltonian, H = K + Φ =
∑N
i=1

p2
i

2m + Φ(q1, . . . , qN ), calculate∇ΓK,∇ΓΦ, and ∇ΓH .

4. Choosing B(Γ) = ∇ΓK, calculate the temperature implied by the new equation. This is called the “kinetic temperature”.

5. Repeat, but for the choice B(Γ) = ∇ΓΦ. This is called the “configurational temperature”.

Note: These formulas are often used in computer simulations. The configurational temperature in particular is useful in Monte
Carlo simulations, for which one usually ignores momenta and hence the more familiar kinetic temperature is not defined.


