33-765 — Statistical Physics

Department of Physics, Carnegie Mellon University, Spring Term 2020, Deserno

Problem sheet \#7

24. Examples of simple thermodynamic identities (4 points)

Rewrite the following thermodynamic derivatives until only the "standard" derivatives $\alpha, \kappa_{T}, c_{P}$, and c_{V} (and possibly factors, such as T or P, or numbers, such as 2 or π) occur:

1. $\left(\frac{\partial T}{\partial P}\right)_{S, N}=$?
2. $\left(\frac{\partial F}{\partial S}\right)_{T, N}=$?

25. Maxwell relations and Jacobians in tedious disguise (4 points)

1. Prove the first $T \mathrm{~d} S$ equation: $T \mathrm{~d} S=N c_{V} \mathrm{~d} T+\frac{\alpha T}{\kappa_{T}} \mathrm{~d} V$.
2. Prove the second $T \mathrm{~d} S$ equation: $T \mathrm{~d} S=N c_{P} \mathrm{~d} T-\alpha T V \mathrm{~d} P$.

Hint: If you write the entropy $S(\cdot, \cdot, N)$ in the variables indicated by the $T d S$ equation(s), what would be its differential?

26. "A pearl of theoretical physics"... (4 points)

...that's what H.A. Lorentz called Boltzmann's following brilliant insight: Consider some mystery system, of which we only know that it is extensive, the chemical potential vanishes, and it satisfies the equation of state $P V=\frac{1}{3} U$.

1. Explain why in such a situation we must have $U(T, V)=V u(T)$.
2. Express the entropy as a function of temperature and volume. (This will involve $u(T)$, which you need not eliminate.)

Hint: The Euler equation will prove useful, but you should explain, why you're allowed to use it!
3. Find a differential equation for $u(T)$ by pondering over the temperature dependence of the pressure. (Hint: Maxwell!)
4. Solve the differential equation and thus predict how the energy density and the entropy depend on the temperature.

27. Relation between the isothermal and the adiabatic compressibilities (4 points)

In analogy to the well-known relation between the isobaric and the isochoric heat capacities, c_{P} and c_{V}, derive the following very similar formula for the isothermal and adiabatic compressibilities, κ_{T} and κ_{S} :

$$
\kappa_{T}-\kappa_{S}=\frac{T V \alpha^{2}}{N c_{P}} .
$$

28. Adiabatic compression (4 points)

1. Show that, quite generally, $\frac{\kappa_{T}}{\kappa_{S}}=\frac{c_{P}}{c_{V}}=: \gamma$, where γ is called the adiabatic index.
2. Calculate κ_{T}, c_{V}, c_{P}, and γ for the monoatomic ideal gas.
3. Show that for adiabatic (constant entropy) compression of an ideal gas we get $P \propto V^{-\gamma}$.
