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8. An application of the transformation law of probability densities (4 points)

Let X and Y be two independent continuous random variables on R which are both distributed according to a Gaussian with

mean zero and variance one. Define the new random variable Z = X/Y . What is the probability density of Z?

9. Simplifying ratios (4 points)

Let’s say we have two independent continuous random variables X and Y . Consider the following claim:

〈

X

Y

〉

?
=

〈X〉
〈Y 〉 . (1)

Is this true? If you think yes, then prove it. If you think it’s not true, then prove that it’s not true.

10. Transformation theorem for probability densities—prescription strength (6 points)

Let X > 0 be a continuous random variable with probability density pX(x) = e−x. What is the p-density pY (y) of Y = sinX?

Hints: You will find it useful to distinguish the cases y > 0 and y < 0. Plot the argument of the delta-function in the

transformation law and figure out, how to systematically enumerate its zeros. Try to write the answer as nicely as you can!

11. Characteristic functions and the amazing Central Limit Theorem (6 points)

The Fourier transform p̃(k) of a probability density (henceforth: “p-density”) p(x) is also called the “characteristic function”:

p̃(k) =
〈

eikx
〉

=

∫

dx p(x) eikx
[

and hence: p(x) =
1

2π

∫

dk p̃(k) e−ikx

]

. (2)

1. Let X be a random variable whose p-density pX(x) has moments µn = 〈Xn〉. If these moments µn exists, prove that

µn = i−n

[

∂n

∂kn
p̃X(k)

]

k=0

. (3)

2. If p̃aX(k) is the characteristic function of the random variable aX (with some a ∈ R), show that p̃aX(k) = p̃X(ak).

3. Let X and Y be two independent random variables with p-densities pX(x) and pY (y). Let pX+Y (z) be the p-density of

Z = X + Y . Prove that pX+Y (z) =
∫

dx pX(x) pY (z − x) and that p̃X+Y (k) = p̃X(k) p̃Y (k).

4. Let X1, . . . , Xn be n independent random variables with identical distribution pX(x), which has mean µ1 and finite

variance σ2 = µ2 − µ2
1. Consider the centered and normalized random variables Yi = (Xi − µ1)/σ (which obviously

have zero mean and unit variance) and the new (and seemingly curiously normalized) sum random variable

Zn =
1√
n

n
∑

i=1

Yi =
X1 +X2 + · · ·+Xn − nµ1

σ
√
n

. (4)

If p̃Zn
(k) is the characteristic function of (the p-density of) Zn, show that in the limit of large n you get

lim
n→∞

p̃Zn
(k) = e−

1

2
k2

and hence pZn
(x) −→ 1√

2π
e−

1

2
x2 ≡ G(0,1)(x) . (5)

Hint: The proof follows swiftly from what you’ve worked out so far; you will also need a cute representation for the

exponential function: limn→∞[1 + x/n+ o(x/n)]n = ex, where o(z) is any term that satisfies limz→0 o(z)/z = 0.

This is (a version of) the amazing Central Limit Theorem: The distribution of the
√
n-normalized sum of the centered Xi becomes a Gaussian with

zero mean and unit variance, independent of the actual distribution of the Xi (as long as their variance is finite). It also implies that for increasing n

the p-density of the arithmetic mean, Xi = 1
n
(X1 + · · · + Xn) = µ + σ

√

n
Zn converges against, G(µ,σ/

√

n)(x), a Gaussian centered around µ

with variance σ/
√
n. Hence, the error of the mean also becomes Gaussian and decreases like 1/

√
n. The Central Limit Theorem explains why the

Gaussian distribution is “normal”: It naturally emerges once you do averaging. This is also why it appears all over the place.


