33-765 — Statistical Physics

Department of Physics, Carnegie Mellon University, Spring Term 2019, Deserno

Problem sheet #3

8. An application of the transformation law of probability densities (4 points)

Let X and Y be two independent continuous random variables on \mathbb{R} which are both distributed according to a Gaussian with mean zero and variance one. Define the new random variable Z = X/Y. What is the probability density of Z?

9. Simplifying ratios (4 points)

Let's say we have two *independent* continuous random variables X and Y. Consider the following claim:

$$\left\langle \frac{X}{Y} \right\rangle \stackrel{?}{=} \frac{\langle X \rangle}{\langle Y \rangle} \,. \tag{1}$$

Is this true? If you think yes, then prove it. If you think it's not true, then prove that it's not true.

10. Transformation theorem for probability densities—prescription strength (6 points)

Let X > 0 be a continuous random variable with probability density $p_X(x) = e^{-x}$. What is the p-density $p_Y(y)$ of $Y = \sin X$? Hints: You will find it useful to distinguish the cases y > 0 and y < 0. Plot the argument of the delta-function in the transformation law and figure out, how to systematically enumerate its zeros. Try to write the answer as nicely as you can!

11. Characteristic functions and the amazing Central Limit Theorem (6 points)

The Fourier transform $\tilde{p}(k)$ of a probability density (henceforth: "p-density") p(x) is also called the "characteristic function":

$$\tilde{p}(k) = \left\langle e^{\mathrm{i}kx} \right\rangle = \int \mathrm{d}x \, p(x) \, e^{\mathrm{i}kx} \qquad \left[\text{and hence:} \quad p(x) = \frac{1}{2\pi} \int \mathrm{d}k \, \tilde{p}(k) \, e^{-\mathrm{i}kx} \right] \,.$$
 (2)

1. Let X be a random variable whose p-density $p_X(x)$ has moments $\mu_n = \langle X^n \rangle$. If these moments μ_n exists, prove that

$$\mu_n = i^{-n} \left[\frac{\partial^n}{\partial k^n} \tilde{p}_X(k) \right]_{k=0} . \tag{3}$$

- 2. If $\tilde{p}_{aX}(k)$ is the characteristic function of the random variable aX (with some $a \in \mathbb{R}$), show that $\tilde{p}_{aX}(k) = \tilde{p}_X(ak)$.
- 3. Let X and Y be two *independent* random variables with p-densities $p_X(x)$ and $p_Y(y)$. Let $p_{X+Y}(z)$ be the p-density of Z = X + Y. Prove that $p_{X+Y}(z) = \int \mathrm{d}x \; p_X(x) \, p_Y(z-x)$ and that $\tilde{p}_{X+Y}(k) = \tilde{p}_X(k) \; \tilde{p}_Y(k)$.
- 4. Let X_1, \ldots, X_n be *n* independent random variables with identical distribution $p_X(x)$, which has mean μ_1 and finite variance $\sigma^2 = \mu_2 \mu_1^2$. Consider the centered and normalized random variables $Y_i = (X_i \mu_1)/\sigma$ (which obviously have zero mean and unit variance) and the new (and seemingly curiously normalized) sum random variable

$$Z_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i = \frac{X_1 + X_2 + \dots + X_n - n \,\mu_1}{\sigma \,\sqrt{n}} \,. \tag{4}$$

If $\tilde{p}_{Z_n}(k)$ is the characteristic function of (the p-density of) Z_n , show that in the limit of large n you get

$$\lim_{n \to \infty} \tilde{p}_{Z_n}(k) = e^{-\frac{1}{2}k^2} \quad \text{and hence} \quad p_{Z_n}(x) \longrightarrow \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} \equiv \mathcal{G}_{(0,1)}(x). \tag{5}$$

Hint: The proof follows swiftly from what you've worked out so far; you will also need a cute representation for the exponential function: $\lim_{n\to\infty} [1+x/n+o(x/n)]^n = e^x$, where o(z) is any term that satisfies $\lim_{z\to 0} o(z)/z = 0$.

This is (a version of) the amazing **Central Limit Theorem**: The distribution of the \sqrt{n} -normalized sum of the centered X_i becomes a Gaussian with zero mean and unit variance, independent of the actual distribution of the X_i (as long as their variance is finite). It also implies that for increasing n the p-density of the arithmetic mean, $\overline{X_i} = \frac{1}{n}(X_1 + \dots + X_n) = \mu + \frac{\sigma}{\sqrt{n}}Z_n$ converges against, $\mathcal{G}_{(\mu,\sigma/\sqrt{n})}(x)$, a Gaussian centered around μ with variance σ/\sqrt{n} . Hence, the *error of the mean* also becomes Gaussian and decreases like $1/\sqrt{n}$. The Central Limit Theorem explains why the Gaussian distribution is "normal": It naturally emerges once you do averaging. This is also why it appears all over the place.