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15 Channel Capacities

15.1 Introduction

F The theory of quantum data compression and quantum channel capacities is basically
an attempt to generalize a number of classical concepts and results to quantum systems.
While a lot of progress has been made (at least in the opinion of those who have been
publishing papers on the subject!), at present this generalization is far from complete. There
are many outstanding problems which are the topics of ongoing research.

• The purpose of these notes is to present an overview of some aspects of the subject,
with an emphasis on the general ideas, not formal definitions or proofs. We will focus on the
simplest cases: memoryless 1 bit classical channels and their 1 qubit quantum counterparts.

F Von Neumann entropy of a density operator. It is defined to be

S(ρ) = −Tr(ρ log ρ) = −
∑

j

pj log pj, (15.1)

where {pj} are the eigenvalues of ρ.

◦ The units of S(ρ), as for other entropies, are determined by the base used for logarithms.
We shall (unless stated otherwise) use base 2, so S is measured in bits.

◦ Remark. A typical way of defining a function f(A), where f is a numerical function
and A operator which can be written in diagonal form using an orthonormal basis {|aj〉},
i.e., as A =

∑

j αj[aj], is f(A) =
∑

j f(αj)[aj], assuming that f is defined for each eigenvalue
αj. The function f(x) = x log x is defined for x ≥ 0 if we let f(0) = 0.

• Note that the von Neumann entropy is equal to the Shannon entropy for a probability
distribution {pj}.
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• A number of useful properties of S(ρ) are noted in QCQI Sec. 11.3.

15.2 Classical Error Correction and Channel Capacity

F An important problem in classical information theory is that of reliable transmission
of information from one place to another. Given that the world is not perfect, ultimate
reliability is not achievable, but one would like systems which will transmit a message with
a suitably small probability of error, less than some ε.

• Consider a one bit memoryless channel, and suppose that the probability of error is p if
0 is transmitted, and q if 1 is transmitted. That is, if a 0 enters the channel, the probability
of its exiting as a 1 is p, and as a 0 (no error) is 1 − p.

2 Exercise. Suppose p = q = p and that the tolerable error rate for an n-bit message
is 0.1 in the sense that 90% of the time the entire message should arrive error-free. What
must p be if (i) n=1, (ii) n=5, (iii) n=25?

F In order to send long messages reliably over a noisy channel it is necessary to correct
errors. Error-correcting codes are used to transmit a message in a redundant form so that
the original can be recovered, provided not too many errors are introduced in the process of
transmission. A simple example is the 3-bit code in which to transmit a 0 one sends three 0’s
in succession, 000, and to transmit a 1, three 1’s, 111. If at most one of the bits is corrupted
during the transmission process, the original 0 or 1 can be recovered by the majority rule

decoding scheme: at the receiving end, a 101 is interpreted as a 1, etc.

2 Exercise. Suppose the 3-bit code is used with a channel with p = q = p. What is the
probability p′ of an error in the output bit? How small must p be in order for this scheme
to show an improvement? What is the degree of improvement when p is quite small?

• The basic process we are interested in is shown schematically in Fig. 15.1. An initial
message M on the left is encoded by the device C and sent over the channel to where it is
decoded by the device D to yield a message M ′. If M ′ = M the transmission was successful,
while M ′ 6= M means that there was an error which was not caught by the detection
process. The probability of an error depends on the message M , as well as on the encoding
and decoding procedures, and the noise present in the channel (i.e., p and q for our one bit
channel). Let ε denote the maximum probability of error over all possible messages M .

C DMessage M Message M ′
Channel

Figure 15.1: Coding and decoding.

F The capacity of a noisy 1-bit channel can be defined in the following way (Cover and
Thomas,1 Sec. 8.5, somewhat modified). Let [k, n] denote a code in which k successive bits

1Elements of Information Theory (Wiley, 1991).

2



of the message are encoded in n bits to form a codeword. The message is then transmitted
by sending successive codewords, one bit at a time, through the channel. Each codeword is
decoded at the receiving end in order to recover the original k bits. If these are identical
to the original k-bit message, we say that it has been transmitted successfully; otherwise, if
even one of the bits is wrong, there has been an error. Let us define the uncertainty of such
a scheme as the maximum probability of error over all of the 2k possible messages one can
construct from k bits. The capacity of the channel C is then the upper limit, as k goes to
infinity, of k/n for sequences of codes for which the uncertainty goes to zero.

• A more precise definition is the following. A number R is said to be an achievable rate

for the channel if there is a sequence of codes [k, n], along with an appropriate decoding
method for each code, such that for all k sufficiently large in a sequence tending to infinity
(e.g., k = 4, 8, 20, . . .), with n is a function of k, it is the case that k/n ≥ R, and the
uncertainty (as defined above) goes to zero as k → ∞. The capacity C is then the supremum
over all achievable rates.

F This type of definition has its utility, but actually using it to compute the capacity of
a noisy channel is rather impractical. Shannon showed that one can define (or compute) the
capacity using a far simpler procedure. Recall (Sec. 11.4) that for a noisy channel one can
define a mutual information I(X:Y ) whose interpretation is that it is the average amount of
information Bob learns, by observing the output, about what Alice inserted in the channel.
This depends on the joint probability distribution r(x, y) of the input bit x and the output
bit y in the case of interest to us, which in turn is determined by the channel channel noise
characteristics p and q, and also by the initial probability distribution p(x) for the input.
What Shannon showed is that

C = max
p(x)

I(X:Y ). (15.2)

While it is not (at least in general) a simple task to carry out the maximzation in closed
form, it is not difficult to do it numerically.

• Note that (15.2) makes good intuitive sense, in that the average amount of information
flowing through the channel every time a bit is transmitted is I(X:Y ) when successive bits
are statistically independent. Finding useful codes which make good use of the channel is,
of course, a nontrivial matter.

F While sending the encoded message through the channel one bit at a time is the typical
way of viewing channel capacity, there is an alternative which will be particularly helpful
when we come to quantum channels. Rather than using one channel n times, we can think
of n channels in parallel used just once to transmit a single codeword, as in Fig. 15.2.

• The capacity C is defined in the same way as before: the upper limit, as k goes to
infinity, of k/n for sequences of codes for which the uncertainty goes to zero. Or use the
achievable rate to obtain a more precise statement.
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Figure 15.2: Coding and decoding using n parallel channels

15.3 Ideal and Noisy Quantum Channels

F The distinction between quantum and classical channels is somewhat arbitrary, since
in the real world all physical channels are, fundamentally, quantum objects. However, for
many of them the process of transmitting information can be described quite satisfactorily
in terms of classical physics. This is in particular the case for optical fibers in which the
information resides in pulses of light containing large numbers of photons. We use the term
“quantum channel” for cases in which classical concepts are not adequate for describing the
transmission of information.

F The simplest example of a quantum channel is the ideal 1-qubit channel in which if
the qubit enters the channel in any state |ψ〉 = α|0〉 + β|1〉 of its two-dimensional Hilbert
space, it emerges from the channel in precisely the same state.

• The same definition will work for an ideal quantum channel associated with a Hilbert
space of dimension d greater than 2. Usually we will be thinking of channels of dimension
d = 2k corresonding to k qubits “in parallel”.

• We will also use the term “ideal” for a channel in which the initial |ψ〉 is mapped to an
output U |ψ〉, where U is a unitary map independent of |ψ〉. The reason is that the “noise”
in this channel can be eliminated by simply placing a unitary transformation U−1 at the
output of the channel, or at the input of the channel. The situation is analogous to that of a
classical 1-bit channel which always maps 0 to 1 and 1 to 0: it is not really “noisy,” because
there is a simple way of processing the output in order to obtain a perfect channel.

• When a distinctive name is needed for the ideal channel in which U = I (up to
some phase factor), we shall refer to it as an identity channel, since the corresponding
superoperator Q for the channel is the identity I, which maps any operator to itself.

F The noise of a noisy 1-qubit channel can be characterized in the following way. Pure
states which enter the channel correspond to points on the surface of the Bloch sphere. Each
such point is mapped into a density operator represented by a point lying inside the Bloch
sphere (or possibly on its surface). The points which are images of the surface of the input
sphere form an ellipsoid with three semi-major axes which are in general different.

◦ For some examples of such ellipsoids, see QCQI pp. 376ff.
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• Since unitary transformations correspond to (proper) rotations of the Bloch sphere,
a little thought will show that if we ignore (as in the ideal channel) changes produced by
applying a unitary transformation to the output signal, a channel is characterized by 6 real
parameters, which can be thought of as the semi-major axes of the ellipsoid and the vector
from the center of the Bloch sphere to the center of the ellipsoid in a coordinate system in
which the axes of the ellipsoid are lined up with the x, y, and z axes. By contrast, a 1-bit
classical channel is characterized by two real numbers: the probability p that a 0 flips to a
1, and the probability q that a 1 flips to a 0.

◦ The analog of a symmetrical classical channel in which q = p is a 1-qubit channel
in which the center of the ellipsoid is at the center of the Bloch sphere. There are but 3
parameters, the ellipsoid semiaxes, needed to characterize the noise in this case, in contrast
to 1 parameter for a symmetrical classical channel.

F In mathematical terms the channel is described by a superoperator. We will use Q,
rather than E as in QCQI, to avoid confusion with E as a symbol for an ensemble. If ρ is a
density operator on the quantum Hilbert space A representing the entrance of the channel,
then ρ′ = Q(ρ) is the output density operator on the channel output B (which need not have
the same dimension as A.) The linear map Q has various properties discussed in QCQI,
Sec. 8.2.

• The channel can also be thought of as produced by a single unitary transformation
acting on the tensor product of the channel input Hilbert space A, and an “environment” C
in a particular pure state, and mapping A⊗ C to B ⊗ D. The partial trace of the resulting
state over D yields ρ′.

15.4 Classical Capacity of a Quantum Channel

F A topic much discussed in quantum information theory is the classical capacity CC

of a quantum channel for “classical information.” While this may seem like (and often is) a
purely theoretical enterprise, there is a reason why it might one day be of some interest. All
channels used for high-speed communication of classical data, such as optical fibers, are, in
fact, quantum mechanical in nature. Most of the time one can ignore this, because classical
physics suffices to describe the process of information transfer: an optical pulse contains a
large number of photons. But as technology improves, there will be (one suspects) a tendency
for the engineers to use fewer photons per pulse in order to send more messages down the
fiber, and eventually one reaches a limit in which quantum effects will be important.

• The basic idea of sending classical information over a quantum channel is the following.
At one end big, macroscopic “classical” signals, are converted into states of individual carriers
of quantum information, which are then sent over the quantum channel. At the other end
these carriers are further processed or measured in order to again produce big, macroscopic
signals. Both the beginning and the end signals are of a sort which can by analyzed using
standard (classical) information theory, so the classical capacity can be computed using
well-known formulas.

• The trouble is that there are a large number of different ways of converting classical
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signals into quantum states, and transforming such states back into classical signals. Pre-
sumably the capacity should be based on the optimum procedures for doing this. But what
are they?

F Here is one procedure. Pick an orthonormal basis A = {|a0〉, |a1〉} at the input and a
second orthonormal basis B = {|b0〉, |b1〉} at the output of the noisy 1 qubit channel. If the
initial state is one of the A states and we measure in the B basis, then the channel properties
are determined by a set of conditional probabilities Pr(bk | aj), just as in a one-bit classical
channel, and we can use them to calculate a capacity C(A,B) as in (15.2). Thus we might
define a classical capacity

Ca = max
A,B

C(A,B). (15.3)

• However, there are other possibilities. Rather than measure the output in an orthonor-
mal basis, we might carry out a POVM measurement P , which can be thought of as a
processing step in which the output qubit interacts with ancillary qubits through a specific
unitary interaction, followed by a measurement (of the ordinary or projective sort) on this
collection of qubits. As measurements in a particular basis are included among possible
POVM’s, this approach cannot decrease the maximum mutual information, and might even
increase it.

• Similarly, rather than restricting the input to states of a given orthonormal basis, we
might allow them to be drawn from a general ensemble. It is convenient to introduce two
types of ensembles. An ensemble of mixed states will be denoted by

E = {px, ρx}, (15.4)

where x is just a label identifying different elements in the ensemble (you can think of it as
an integer), {px} is a collection of probabilities (each px > 0,

∑

x px = 1), and the ρx are
density operators, all on the same Hilbert space. In an ensemble of pure states, each ρx is
a projector [ψx] on some |ψx〉, and for such an ensemble one can use a notation employing
kets rather than the projectors,

F = {px, |ψx〉}. (15.5)

F We now define a second capacity Cb of a quantum channel for classical information,

Cb = sup
F ,P

I(F :P), (15.6)

where the maximum or suprememum is taken over all pure-state ensembles at the input,
and all POVM measurements P at the output, with I the corresponding Shannon mutual
information between Alice and Bob.

◦ We could have used mixed-state ensembles E in (15.6), for these include pure states as
a special case, and one knows that it suffices to consider pure states.

◦ The quantity I(F :P) is to be thought of in the following sense. Alice uses a random
number generator to generate a label x with probability px, records the value of x in her
notebook, and then prepares a state |ψx〉 and sends it to Bob. Bob carries out his POVM
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measurement on the state sent by Alice, and this allows him to guess a value x′ for x, which
he records in his notebook. From the conditional probability c(x′ |x) of x′ given x together
with the probability px, one can calculate the mutual information between Alice and Bob
using ordinary information theory. Then Cb is the maximum of this quantity over all possible
input ensembles and output measuring strategies. Note that this includes varying px, the
only sort of optimization one worries about in the case of a classical channel.

F Both Ca and Cb are lower bounds, though in some cases they might be equal to, the
“real” classical capacity Cr of a quantum channel, defined as follows. Recall that in the
case of a classical channel we allow messages of k bits to be encoded in some fashion in
strings of n bits which are then sent successively, or in parallel in the manner indicated in
Fig. 15.2, through the noisy channel, and decoded at the other end. The obvious analog
if one replaces the n noisy classical channels in the middle part of the figure with n noisy
quantum channels is to let let C in Fig. 15.2 be a device which for each k-bit message produces
some (in general entangled) quantum state on the tensor product of the n Hilbert spaces
representing the inputs to the channnels. Let D represent an arbitrary POVM measurement
on the collection, regarded as a single quantum system, of n qubits emerging from these
channels after the noisy transmission, together with some algorithm which uses the output
of the POVM to guess the value of the original k-bit string. Let ε be the uncertainty, defined
(as earlier) as the maximum, over all initial k-bit strings, of the probability of an error: the
probability that the output string differs from the input string. Then, in analogy with the
classical case, Cr should be the upper limit of k/n as k goes to infinity, for sequences of
encoding and decoding devices C and D chosen so that ε tends to zero in the same limit.
Once again, a more precise definition can be formulated using the achievable rate, as in
Sec. 15.2.

• The trouble with Cr is that no one knows how to calculate it, even numerically, for
a general one-qubit quantum channel. In the quantum case there is nothing like the nice,
simple expression (15.2) for classical channels. The best one can do is to place certain bounds
on Cr. Thus it is obvious that Ca ≤ Cb ≤ Cr, and there is a still better lower bound Cp to
Cr discussed at the end of the next section.

15.5 Holevo Function and Bound; Classical Product Capacity

F Following (in part) the notation of Preskill’s notes, Sec. 5.3, we let E = {px, ρx} be
an ensemble, where the {px} are probabilities (positive, sum to 1) and the {ρx} are density
operators on the same Hilbert space. The Holevo function χ is defined by

χ(E) = S(
∑

x

pxρx) −
∑

x

pxS(ρx) = S(ρ) −
∑

x

pxS(ρx), (15.7)

where
ρ =

∑

x

ρx (15.8)

is the density operator for the ensemble.
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• As emphasized by Preskill, χ(E) is a function of the ensemble E and not a function
of (just) its density operator ρ. If the ensemble consists of pure states, ρx = [ψx] for every
j, then χ(E) = S(ρ) is the same as the von Neumann entropy of ρ, but in other cases it is
smaller. Recall that, except for a pure state, there are many different ensembles which can
be associated with the same density operator ρ in the sense of (15.8).

F The Holevo function occurs in the Holevo bound

I(A:B) ≤ χ(E), (15.9)

interpreted in the following way. Alice chooses at random with probability px from the
ensemble E a system described by the density operator ρx, notes down value of x, and gives
the system (but not the value of x) to Bob. His task is to carry out whatever measurements
he wants to, including POVM’s, on this system in order to determine the value of x. A
particular strategy will result in Bob making an estimate x′ for x. Imagine that the same
protocol is carried out a number of times, with xj and x′j the values for trial j. Then I(A:B)
is the mutual information per pair xj, x

′
j between the string {xj} in Alice’s notebook and

the string {x′j} in Bob’s notbook.

◦ Both Bob and Alice are assumed to know which ensemble E = {{px, ρx} is in use, and
Bob can develop his measurement strategy accordingly.

◦ Note that Bob’s task is to estimate the value of x, which is not the same thing as
“measuring ρx.” Unless ρx and ρx′ are orthogonal, i.e., ρxρx′ = 0, there is no way to
reliably distinguish the two by means of a measurement, just as there is in general no way
to distinguish two classical probability distributions in terms of a single trial unless they do
not overlap.

• Alice’s task is reasonably clear when E is an ensemble of pure states {{px, |ψx〉}. But
what if the some element is a mixed state? How is Alice to prepare that? The simple answer
is that every mixed state ρx is itself associated with an ensemble of pure states occurring with
certain probabilities, and Alice can pick one of these with the appropriate probability. So
after running the first random number generator to determine x, she runs a second random
number generator to produce a label y for one of the elements of the ensemble associated
with ρx, and chooses the corresponding |ψy〉.

• An alternative way to think of the ρx mixed states is as follows, A machine has been
programmed to produce a state |ψx〉 when supplied with the classical signal x, and signals are
fed to it at random, x with probability px. The result is the pure state ensemble {{px, |ψx〉}.
But the machine is getting old and unreliable, and measurements show that the x signal does
not always result in |ψx〉. Instead, the output must be described by a mixed state density
operator ρx. Consequently, χ(E) is reduced by the negative terms on the right side of (15.8),
reflecting the fact that Bob’s task of identifying the correct x has become more difficult, due
to this additional source of noise.

• Proving the Holevo bound is not trivial. Proofs are given in QCQI Sec. 12.1.1, and in
Preskill’s notes, Sec. 5.4.1.

F In the case of an ensemble of pure states, the Holevo bound (15.9) states that NS(ρ) is
the most information which Bob can extract about the x values when Alice sends randomly

8



chosen states of the ensemble a large number of times. This is closely connected with
Schumacher’s result on quantum data compression discussed below.

F The Holevo function also enters into yet one more (in addition to those discussed
in Sec. 15.4) measure of the classical capacity of a quantum channel. It is what QCQI,
Sec. 12.3.2, call the product capacity, and which we will denote by the symbol Cp. It is
similar to Cr except that instead of letting C in Fig. 15.2 represent an encoding of a k-bit
string as an arbitrary quantum state on the n input channels, one only allows product states
of the general form |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉, where the subscript j refers to the j’th channel.

• A result of Holevo, Schumacher, and Westmoreland, QCQI Sec. 12.3.2, is that Cp is
given by the formula

Cp = max
F

χ(Q(F)), (15.10)

where χ is the Holevo function defined in (15.7), and the maximization is over all ensembles
of the form (15.5). By Q(F) we mean the ensemble obtained by sending each of the states
in F through the quantum channel described by the superoperator Q:

Q(F) = {px,Q([ψx])}. (15.11)

(As usual, [ψx] denotes the projector onto |ψx〉.) Note that the new ensemble will (in general)
be an ensemble of mixed states, of the type (15.4).

◦ In QCQI the maximum in (15.10) is taken over all ensembles of mixed states, including
pure states as special cases. Since the maximum is actually achieved on the pure states, it
suffices to restrict consideration to the latter.

F We have now introduced four definitions of the classical capacity of a quantum channel.
They are ordered by the inequalities

Ca ≤ Cb ≤ Cp ≤ Cr. (15.12)

According to QCQI the experts think Cp may be equal to Cr. But as they have not been
able to prove it, some scepticism is in order. What is not in doubt is that for a particular
channel, for which Q is known, finding Cp using (15.10) by some numerical method, even
though it looks rather formidable, is an easier task than finding Cb, and is very much simpler
than trying to evaluate Cr directly in terms of the definition given in Sec. 15.4

15.6 Quantum Data Compression

• Reference: QCQI Sec. 12.2. (Also see Sec. 11.2 of these notes.)

F A classical data compression result due to Shannon is stated and proved in QCQI
Sec. 12.1. The essential idea was discussed in Sec. 11.2 of these notes. Given a random
variable X with a probability distribution px, thought of as a message, then the minimum
number of bits required to store or transmit n such messages, when n is large, is given
approximately by nH(X), where H(X) = −

∑

x px log px is the Shannon entropy associated
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with this probability distribution. For the meaning of “approximately,” see the discussion
in QCQI.

F A quantum counterpart of this classical result is Schumacher’s noiseless channel coding
theorem, QCQI Sec. 12.2.2.2 Here the idea is that a source produces a quantum state |x〉
in a Hilbert space H with probability px, and one wishes to store the information in a long
string of n such states, i.e., in

|Ψ〉 = |x1〉 ⊗ |x2〉 ⊗ · · · |xn〉 ∈ H⊗n, (15.13)

in an efficient fashion. The idea is to be able with high probability to store messages of this
sort on a smaller Hilbert space of dimension d in such a way that they can be recovered
with high accuracy. High accuracy is interpreted to mean that the fidelity of the recovered
message compared with the original is with high probability very close to 1. The result of
Schumacher is that this can be done if d is of the order of 2nS, or larger, where S is the von
Neumann entropy, (15.1), of the density operator

ρ =
∑

x

px[x] (15.14)

corresponding to the ensemble of states in question.

◦ The rigorous statement requires that n be sufficiently large in a sense determined by
small constants ε > 0, δ > 0; see QCQI.

• In the case in which the different elements of the ensemble {|x〉} are orthogonal to
each other, Schumacher’s result reduces in an obvious way to the classical result. One
simply measures each element on the right side of (15.13) to see what state it is in, writes
down the answer, compresses it using a classical algorithm to get a string of bits, creates
a corresponding set of qubits so that one is storing the information in a proper quantum
Hilbert space, etc.

• So the interesting case is the one in which at least some of the states are not orthogonal
to each other. Here measurements (at least of the one-by-one type) will not work. Instead,
the compression scheme is based on the following idea. There is a subspace (in QCQI the
subspace is denoted by T (n, ε) and the corresponding projector is P (n, ε)) of H⊗n with the
property that with high probability a state of the form |Ψ〉 lies inside it, but its dimension d
is of order 2nS. Thus the Hilbert space constituted by this subspace contains the information
required to reproduce |Ψ〉.

• One can imagine a unitary map which carries the subspace of interest into some other
quantum system, say a collection of qubits. One will need approximately nS qubits for the
storage if S is measured in bits.

F What may at first seem surprising is that a state of the form |Ψ〉 contain a lot less
“quantum” information than one might suppose by analogy with a set of classical symbols.

2Their discussion is somewhat more general, as they are interested in processes of compression where the
quantum carriers of information are entangled with others not participating in the compression process.
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For example, suppose that the quantum ensemble consists of the six states |x+〉, |x−〉, |y+〉,
|y−〉, |z+〉, |z−〉 in spin-half or Bloch sphere notation, and each occurs with probability 1/6.
The von Neumann entropy is 1 bit, whereas the entropy associated with six distinct classical
symbols occurring with equal probability is log 6 = 2.58 bits — more than twice as much.

◦ The point is that when viewed as quantum objects, distinct classical objects (such as
a magnetic domain oriented in one direction rather than its opposite) always correspond to
orthogonal quantum states. But in the ensemble under discussion various pairs, such as |x+〉
and |y+〉, are not orthogonal.

15.7 Quantum Capacity of a Quantum Channel

F To understand what is meant by the quantum capacity of a quantum channel, it is
helpful to start with the notion of an ideal channel as defined in Sec. 15.3, in which states
which enter the channel are mapped to the output by a unitary transformation U which is
fixed, in the sense that it does not depend upon the input state. For purposes of exposition
it is simplest to focus on the identity channel, U = I.

• While one usually thinks of sending n quantum signals successively through a single
quantum channel, it is for conceptual purposes quite convenient to imagine identical channels
placed in parallel, as in the middle section of Fig. 15.2.

F It will be convenient to define the quantum capacity Q of an ideal channel to be

Q = log d, (15.15)

where d is the dimension of the Hilbert space representing the input of the channel, or its
output, since the two are the same. If the logarithm is to base 2, Q is measured in bits.
(Calling the unit a “qubit” would hinder useful comparisons between quantum capacities
and classical capacities.)

• If two ideal channels are placed in parallel to form a single ideal channel, the input
space of the latter is simply the tensor product, call it A1 ⊗ A2 of the two input spaces,
and the logarithmic measure in (15.15) means the total capacity will be the sum of the two
capacities, since the dimension of a tensor product is the product of the dimensions. It is
the same for three or more channels in parallel. In particular, n 1-qubit ideal channels in
parallel have a capacity of n bits.

2 Exercise. Suppose that U and V are unitary operators (not necessarily the identity)
mapping input to output for two ideal channels. If the two channels are in parallel the
corresponding map on the tensor product is U ⊗ V . Check that the combined channel is
ideal in that not only product states but also entangled states in the input Hilbert space are
mapped to the output in such a way that a suitable fixed unitary W applied to the output
results in an identity channel.

F To define the quantum capacity of a noisy one-qubit quantum channel, we again think
of n identical (i.e., the noise characteristics are the same) channels in parallel, as in Fig. 15.2.
However, the incoming and outgoing lines in this figure now represent qubits. On the left
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side, the first k qubits carry the quantum signal, and the last n − k are ancillary qubits in
some fixed state, which we assume to be |0〉. The encoding transformation C is a unitary
operator on the Hilbert space of n qubits, as is the decoding transformation D. The first k
qubits on the right carry the output of the quantum signal, while the last n− k are simply
thrown away.

• Suppose the input signal is some (normalized) state |Ψ〉 in the 2k-dimensional Hilbert
space of the first k qubits on the left, and RΨ is the density operator for the corresponding
output signal carried by the first k qubits on the right. The fidelity is defined as:

FΨ = 〈Ψ|RΨ|Ψ〉. (15.16)

Let us say that the uncertainty is

ε = max
Ψ

(1 − FΨ). (15.17)

• We then define the quantum capacity Q to be the upper limit of k/n as k goes to
infinity, for sequences of encoding and decoding devices chosen so that the uncertainty ε
tends to zero as k becomes infinite.

◦ QCQI prefer to use the entanglement fidelity of a channel rather than the fidelity as
defined in (15.16). However, for present purposes this makes no difference, as it has been
shown3 that if F in (15.17) is replaced by the entanglement fidelity, the resulting ε can be
larger (it cannot be smaller) by at most a factor of 3/2.

◦ This is basically the same as the definition used in Sec. 15.4 for Cr, the “real” classical
capacity, if we replace incoming and outgoing classical signals with quantum signals. The
main difference is in the definition of the uncertainty. A good quantum coding scheme has
to work reasonably well for any input state in the 2k-dimensional Hilbert space.

◦ The same sort of definition will work for the quantum capacity of a channel with a
Hilbert space of dimension d > 2. In this case the number n of channels in the center part
of Fig. 15.2 will be smaller than the total number of qubits entering on the left, or leaving
on the right. The capacity is again given by the upper limit of k/n as k becomes infinite, for
a sequence or coding and decoding operations chosen so that the uncertainty goes to zero.

2 Exercise. Show that Q ≤ Cr.

• Relating Q to the specific noise properties of a given quantum channel is difficult. In
QCQI Sec. 12.4 a quantity called the coherent information is introduced as a sort of quantum
analog of Shannon’s mutual information. However, the identification is at best tentative,
and its relation to the quantum capacity is not clear.

• Quantum capacities can also be defined for quantum channels assisted by classical
communication, in one or both directions, between Alice and Bob. A discussion of these lies
outside the scope of these notes.

3E. Knill and R. Laflamme, Phys. Rev. A 55 (1997) 900.
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