33-341 - Thermal Physics I

Department of Physics, Carnegie Mellon University, Fall Term 2018, Deserno Sample Midterm 2 Questions

1. Isothermal and adiabatic compressibilities

In analogy to the relation between c_{P} and c_{V}, derive an analogous formula for the two compressibilities:

$$
\begin{equation*}
\kappa_{T}-\kappa_{S}=\frac{T V \alpha^{2}}{N c_{P}} . \tag{1}
\end{equation*}
$$

2. Re-expressing thermodynamic derivatives

Express the following thermodynamic derivative in terms of the standard set of derivatives (and possibly other factors, such as temperature, or pressure, or π):

$$
\left(\frac{\partial F}{\partial S}\right)_{T, N}=?
$$

3. Legendre transform

Consider the function $f(x)=\sqrt{1-x^{2}}$ with $x \in[-1,1]$.

1. Produce a clean sketch of $f(x)$. Pay particular attention to zeros, extrema, symmetry, and asymptotes.
2. What range of values can the slope $f^{\prime}(x)$ take?
3. Is $f(x)$ convex, concave, or neither?
4. Calculate the Legendre transform $f^{\star}(p)$ of $f(x)$. What is the domain of p-values on which $f^{\star}(p)$ is defined?
5. Now make a clean sketch of $f^{\star}(p)$. Again, pay particular attention to zeros, extrema, symmetry, and asymptotes.

4. Inexact differentials and integrating factors

1. Show that for all $\beta \in \mathbb{R}$, with one exception, the differential $đ f=\sqrt{\frac{y}{x}} \mathrm{~d} x-\beta \sqrt{\frac{x}{y}} \mathrm{~d} y$ is not exact. What is the exception?
2. Show that for all $\beta \in \mathbb{R}$, with one exception, there is an $\alpha \in \mathbb{R}$ for which $r(x, y)=\left(\frac{x}{y}\right)^{\alpha}$ becomes an integrating factor. What is the exception?

5. Work done between two finite heat reservoirs

This is similar to HW problem 29, but with a slight twist. Suppose we have two finite heat reservoirs with temperaturedependent heat capacities $C_{i}(T)=A_{i} T^{3}(i \in\{1,2\})$, so that the relationship between their change in temperature and their change in energy is given by $\mathrm{d} U_{i}=C_{i}(T) \mathrm{d} T$. The reservoirs are initially at temperature $T_{i, 0}$. We now put an ideal heat engine between them, depleting that temperature difference to extract mechanical work.

1. What is the final temperature T_{f} ?
2. What is the maximum amount of work that can be extracted?
3. If we bring the reservoirs into contact without running the machine, what is now the final temperature T_{f}^{\star} ?
