33-341 — Thermal Physics I

Department of Physics, Carnegie Mellon University, Fall Term 2018, Deserno

Sample Midterm 2 Questions

1. Isothermal and adiabatic compressibilities

In analogy to the relation between c_P and c_V , derive an analogous formula for the two compressibilities:

$$\kappa_T - \kappa_S = \frac{TV\alpha^2}{Nc_P} \,. \tag{1}$$

2. Re-expressing thermodynamic derivatives

Express the following thermodynamic derivative in terms of the standard set of derivatives (and possibly other factors, such as temperature, or pressure, or π):

$$\left(\frac{\partial F}{\partial S}\right)_{T,N} = ?$$

3. Legendre transform

Consider the function $f(x) = \sqrt{1 - x^2}$ with $x \in [-1, 1]$.

- 1. Produce a *clean* sketch of f(x). Pay particular attention to zeros, extrema, symmetry, and asymptotes.
- 2. What range of values can the slope f'(x) take?
- 3. Is f(x) convex, concave, or neither?
- 4. Calculate the Legendre transform $f^{\star}(p)$ of f(x). What is the domain of p-values on which $f^{\star}(p)$ is defined?
- 5. Now make a *clean* sketch of $f^{\star}(p)$. Again, pay particular attention to zeros, extrema, symmetry, and asymptotes.

4. Inexact differentials and integrating factors

- 1. Show that for all $\beta \in \mathbb{R}$, with one exception, the differential $\overline{d}f = \sqrt{\frac{y}{x}} dx \beta \sqrt{\frac{x}{y}} dy$ is not exact. What is the exception? 2. Show that for all $\beta \in \mathbb{R}$, with one exception, there is an $\alpha \in \mathbb{R}$ for which $r(x, y) = \left(\frac{x}{y}\right)^{\alpha}$ becomes an integrating factor. What is the exception?

5. Work done between two finite heat reservoirs

This is similar to HW problem 29, but with a slight twist. Suppose we have two finite heat reservoirs with temperaturedependent heat capacities $C_i(T) = A_i T^3$ $(i \in \{1, 2\})$, so that the relationship between their change in temperature and their change in energy is given by $dU_i = C_i(T) dT$. The reservoirs are initially at temperature $T_{i,0}$. We now put an ideal heat engine between them, depleting that temperature difference to extract mechanical work.

- 1. What is the final temperature $T_{\rm f}$?
- 2. What is the maximum amount of work that can be extracted?
- 3. If we bring the reservoirs into contact without running the machine, what is now the final temperature T_t^* ?