33-341 - Thermal Physics I

Department of Physics, Carnegie Mellon University, Fall Term 2018, Deserno Sample Midterm Questions

1. Probability densities and random variables

Let $X \in \mathbb{R}$ be a random variable on the real numbers, whose probability density $p_{X}(x)$ is given by $p_{X}(x)=\frac{1}{\pi \cosh (x)}$. Without explicitly checking this, you may rest safely assured that $p_{X}(x)$ is indeed normalized.

1. Provide a clean sketch of $p_{X}(x)$. How does it approach zero as $x \rightarrow \pm \infty$?
2. Let $\mu_{X, n}:=\left\langle X^{n}\right\rangle$ for $n \in \mathbb{N}$ be the $n^{\text {th }}$ moment of $p_{X}(x)$. Without doing an explicit calculation: which of these moments exist, and which of them are nonzero?
3. Let the new random variable $Y:=\cosh (X)$ be a function of the old one. Calculate its probability density $p_{Y}(y)$.

Hint 1: If we use "arcosh" to denote the inverse function of cosh, believe that $\sinh (\operatorname{arcosh}(y))=\sqrt{y^{2}-1}$ for $y \geq 1$.
Hint 2: Don't forget to contemplate that functions needn't be uniquely invertible...
4. Provide a clean sketch of $p_{Y}(y)$. Pay special attention to the domain on which it is defined, asymptotes, and divergences.
5. Let $\mu_{Y, n}:=\left\langle Y^{n}\right\rangle$ for $n \in \mathbb{N}$ be the $n^{\text {th }}$ moment of $p_{Y}(y)$. What can you say about these moments?

2. Let the correlations vanish

Consider two random variables X and Y, with a joint probability distribution given as follows:

$$
P_{X, Y}(x, y)=\left\{\begin{array}{l}
\beta \text { if } X=b \text { and } Y=b \tag{1}\\
\alpha \text { if } X=a \text { and } Y=-a \\
\alpha \text { if } X=-a \text { and } Y=a \\
\beta \text { if } X=-b \text { and } Y=-b
\end{array},\right.
$$

where $b>a>0$. This is also illustrated in the figure on the right.

1. What has to be true for α and β so that this is a proper probability distribution?
2. What are the probability distributions of X and Y ?
3. Calculate $\langle X\rangle$ and $\langle Y\rangle$.
4. For which choices of α and β are X and Y uncorrelated?
5. For the case that X and Y are uncorrelated, are they also independent?

3. Under pressure

Let's say that the entropy of some mystery system is given by the expression

$$
\begin{equation*}
S(E, V, N)=A(E V N)^{1 / 3} \tag{2}
\end{equation*}
$$

with some positive constant A. Show that the pressure of the system is equal to its energy density!

