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A Legendre transform is a procedure for expressing the information content of some function by
using a different independent variable, namely, the derivative of this function with respect to (one
of) its argument(s). These notes explain how this is done and why simply performing some sort of
algebraic substitution instead would destroy information.

I. INTRODUCTION

A. Information content of functions

Functions are mappings, often from some set of real (or
complex) numbers into another such set. They tell us
about some relationship and thus contain information.
In these notes we will be concerned with the question
for how to represent that information content, without
necessarily being able to quantify it. This sounds very
vague, so let us be (marginally) more specific.

How much information is contained in a function? It
turns out that this is a nontrivial question with many
subtle ramifications. Consider for instance the simple
function

f :

 R → R+
0

x 7→ x2
. (1)

It takes little to write this down, so the information con-
tent appears small. And yet, we could decide to in-
stead “implement” this function by a lookup table. Since
single precision floating point numbers require 32 bits
of information, a computer can store 232 ≈ 4.29×109 dif-
ferent single precision floating point numbers. A lookup
table would thus contain twice as many numbers, each
with 32 bits, requiring 32 GB of data (and note that
we can’t actually store all squares in single precision. . . ).
But then, how much information is there in that func-
tion?

It turns out that below we will be interested in ways to
represent the same information content in different ways,
hence we must only answer the question “do two differ-
ent functions contain the same information?” This is a
simpler question, because it only requires us to compare
information content, not actually to quantify it. This is
quite analogous to the situation that permits us to de-
cide whether two sets have the same size (“magnitude”)
without actually counting elements: A sack of apples and
a sack of oranges contain the same number of elements
(and thus have the same magnitude) if we can pair up
the apples and oranges without any of them remaining
unpaired. And as you surely know, by such means Georg
Cantor has first arrived at the quite unexpected and non-
trivial conclusion that the two sets of natural numbers
and rational numbers actually have the same size.

B. Transforms

We are well used to the fact that the information con-
tained in a function can be represented in different ways.
Let us make two examples. Take the function y = f(x)
and let us assume it’s invertible. Then, clearly, the in-
verse function x = f−1(y) contains the same information.
A simple way to convince yourself that this is true is to
recall that the graph of the inverse function is just the
mirror image of the graph of the original function, mir-
rored at the line y = x. And clearly, mirroring preserves
all the information.

The second, maybe more interesting example is that
we can transform functions into other functions. For in-
stance, we can Fourier transform f(x) into the function

f̃(k). For a suitable set of starting functions, Fourier
transforms can be inverted, and hence we can recover
f(x) from f̃(k). This would then let us surmise that the
function and its Fourier transform contain the same in-
formation. Indeed, in functional analysis we would learn
that functions are members of abstract Hilbert spaces
and that they can be represented in different ways—
meaning, using different basis sets—but that it’s always
the same “function” we’re talking about and that a
change of basis set doesn’t change the information con-
tent of the function.

The topic of these notes, Legendre transforms, are yet
another way to transform one function into another func-
tion while preserving information content.

C. Functions and variables

Physicists love streamlined notation. The detailed no-
tation in equation (1) is rarely found in the physics lit-
erature. Physicists often don’t even write y = f(x), they
just talk of the function y(x). And when they refer to the
inverse f−1(y) they call that the function x(y). However,
what seems awfully sleek in fact has the danger of con-
fusing three distinct concepts. What, for instance, do we
now mean by “x”? It could be either one of the following
three:

1. the independent variable x.

2. the (inverse) function f−1.

3. the value f−1(y) resulting from inserting the inde-
pendent variable y into the inverse function f−1.
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Usually, we don’t need to distinguish between these three
things very carefully. However, when it comes to Legen-
dre transforms, the whole point is to change a function
by representing it through a different independent vari-
able, which in turn is defined through (a derivative of)
the function itself. If we are now sloppy, we might miss
the whole concept and everything is somehow redundant
and mysterious. Hence, please make sure that before you
read on, you do understand that there is a difference be-
tween the three concepts above.

Now, the trick is to distinguish between them, with-
out making the notation clumsy. In fact, we would like
to avoid using the seemingly unnecessary extra symbol
“f”. I therefore suggest the following: When we speak of
independent variables, we use their italic symbols. When
we speak of functions, we use roman type, and if we speak
of values of functions, we add the independent variable
in parentheses. This way, the three concepts from above
are distinguished as such: What we formerly all called
“x” is now:

1. the independent variable “x”.

2. the (inverse) function “x”.

3. the value “x(y)” resulting from inserting the inde-
pendent variable y into the inverse function x.

This means, we now have y = y(x) and x = x(y). This
might look unusual. If you feel it is unnecessary, then
please go back and convince yourself that these three
concepts are different things.

II. LEGENDRE TRANSFORM

A. Aim

Take a function y : x 7→ y(x). It contains a lot of in-
formation. For instance, it tells us the y-values for many
chosen values of x, but it also tells us the slope at any
given value of x (as long as the function is differentiable).
Sometimes that derivative turns out to be of so much in-
terest, that one is tempted to use it as a variable itself.
So, if we define

p := y′(x) , (2)

we might want to find a way to express the information
content of the function y using the derivative p as the
independent variable. Of course, we would not want to
lose information along the way. So how could we do that?

The obvious thing to try seems to be this: Solve
Eqn. (2) for x as a function of p, and insert this back
into y(x). This now gives a function of p:

y(x)→ ỹ(p) = y(x(p)) = y
(
y′−1(p)

)
. (3)

The crucial question is: Does this new function ỹ contain
the same information as the original function y? The

quick answer is: No, it doesn’t. And the best way to see
this is by a simple example.

Take for instance the function y : x 7→ 1
2 (x−x0)2. The

derivative is p = y′(x) = x−x0, and this can be uniquely
solved for x as a function of p, giving x = p + x0. If we
insert this back into our original function y(x), we get

y
(
x(p)

)
=

1

2

(
x(p)− x0

)2
=

1

2
p2 . (4)

Notice that the value of x0 has dropped out! Functions
with different values of x0 would map to the same final
function 1

2p
2. Hence, we do not know, if someone tells us

that they have obtained 1
2p

2, which function they started
with. Information is lost.

There is a subtlety here that is worth understanding
fully. You might object that the value of x0 is contained
in the transformation equation, and of course I could
transform 1

2p
2 back, together with the right value of x0,

if I use the right transformation equation. I’d just have
to memorize which transformation I did, and that might
be different for different initial functions (here: different
values of x0). This is true, but this is not the point.
The point is that I do not want to memorize the trans-
formed function together with the transformation equa-
tion. I only want to know by what general procedure the
transformation was accomplished.

There is a way to solve this problem, but not for all
possible functions. It turns out that we will only be able
to do things nicely, if our original function is of a special
form, and this requires one more interlude:

B. Convex and concave functions

Definition (convexity/concavity): Take a function
y : x 7→ y(x) defined over some interval [a, b]. It is
called “convex” over [a, b] if for every choice of numbers
{x1, x2} ∈ [a, b] and every t ∈ [0, 1] we have

y
(
t x1 + (1− t)x2

)
≤ t y(x1) + (1− t) y(x2) . (5)

Geometrically, this means that the graph of the function
lies below the line segment joining any two points of the
graph. A function y is called concave if its negative −y
is convex.

Several remarks are in order:

1. Convex and concave functions are necessarily con-
tinuous. In fact, they have to be differentiable, ex-
cept maybe at countably many points.

2. If a convex function y(x) is everywhere differen-
tiable, then it lies above any of its tangents.

3. If a convex function y(x) is everywhere differen-
tiable twice, then y′′(x) ≥ 0.
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C. Definition of Legendre transform

It turns out that a transformation from a function y(x)
to a new function ?y(p) where (i) p = y′(x) and (ii) no
information is lost is possible if and only if the function
y is either convex or concave. The corresponding trans-
formation works as follows:

Definition (Legendre Transformation):

?y(p) :=

 maxx
{
xp− y(x)

}
if y is convex

minx
{
xp− y(x)

}
if y is concave

. (6)

Again, several remarks are in order:

1. Strictly speaking we should take the supremum
(sup) instead of the maximum, and the infimum
(inf) instead of the minimum.

2. Notice that this is well-defined even if y(x) contains
isolated points at which it is not differentiable.

3. If y(x) is differentiable, finding the maximum or
minimum just requires setting the derivative of the
expression in curly brackets with respect to x to
zero, leading to

0 =
∂

∂x

{
xp− y(x)

}
= p− y′(x) , (7)

and hence we find that the new variable is p =
y′(x), as we aimed to. This is then solved for x,
and inserting the (p-dependent) result will lead to
the value of the maximum or minimum we look for.

4. If a function deviates from being convex or con-
cave only in localized regions, the definition of the
Legendre transform still makes sense.

5. There are different sign conventions in use. Some
people swap the terms between the curly brackets
together with the min/max out front:

y?(p) :=

 minx
{

y(x)− xp
}

if y is convex

maxx
{

y(x)− xp
}

if y is concave
.

(8)
One may check that ?y(p) = −y?(p). The conven-
tion followed with ?y has the advantage that the
Legendre transform of a convex function is convex
and that of a concave function is concave. For the
y?-convention convexity/concavity switches upon
transformation—but it’s the latter which is com-
mon in thermodynamics. Unfortunately, it will also
turn out that what precisely is the inverse Legendre
transform depends on the convention. We’ll get to
that soon.

D. Properties of the Legendre Transform

1. Geometric interpretation

The tangent tx0(x) of some function f(x) constructed
at some point x = x0 has the equation

tx0
(x) = f(x0) + f ′(x0) (x− x0) . (9)

Its value at x = 0 thus satisfies

tx0
(0) = f(x0)− x0f ′(x0) . (10)

The right hand side can be viewed as the Legendre trans-
form of f(x), in the following sense: If we label the tan-
gent by its slope p = f ′(x0) instead of its contact x-value
x0, and if we solve this for x0 = x0(p), we get

f?(p) = f(x0(p))− x0(p) p , (11)

which is exactly of Legendre-transform type. Hence, the
Legendre transform of a convex function can be viewed
as the ordinate value of the tangent to f(x) of slope p:
f?(p) = tx0(p)(0). Notice that if the function f(x) is
differentiable and convex, there exists at most one tan-
gent to every value of the slope p, and hence exactly one
corresponding ordinate value. Such a function can be de-
scribed by the envelope of all its tangents, and since each
such tangent has a unique ordinate value, we begin to see
why Legendre transforms conserve information.

2. Convexity/Concavity

Let us take the definition of a Legendre transformation
as applied to convex functions:

?y(p) := max
x

{
xp− y(x)

}
. (12)

Observe, again, that this often makes sense even if the
function y is not convex to begin with (it might be
“almost” convex, but somewhere have a small concave
bump). However, the resulting function ?y is always con-
vex. This follows simply checking the convexity defini-
tion: Let p1 and p2 be two points in the domain where
?y is defined and let t be within [0, 1]. Then,

?y(tp1 + (1− t)p2) = max
x

{
x[tp1 + (1− t)p2]− y(x)

}
= max

x

{
t
[
xp1 − y(x)

]
+ (1− t)

[
xp2 − y(x)

]}
∗
≤ t max

x

{
xp1 − y(x)

}
+ (1− t) max

x

{
xp2 − y(x)

}
= t ?y(p1) + (1− t) ?y(p2) , (13)

where at “∗” we used the inequality maxx{f(x)+g(x)} ≤
maxx{f(x)}+ maxx{g(x)}. �

For the same reason, a Legendre transform using the
“min” procedure in Eqn. (6) leads to a concave function,
even if the function to start with is not concave.
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?y-convention y?-convention

convex concave convex concave
?y(p) = maxx{xp− y(x)} ?y(p) = minx{xp− y(x)} y?(p) = minx{y(x)− xp} y?(p) = maxx{y(x)− xp}
y(x) = maxx{xp− ?y(p)} y(x) = minx{xp− ?y(p)} y(x) = maxx{y?(x) + xp} y(x) = minx{y?(x) + xp}

?y′ = y′−1 ?y′ = y′−1 y?′ = −y′−1 y?′ = −y′−1

dy = p dx dy = p dx dy = p dx dy = p dx

d?y = xdp d?y = x dp dy? = −xdp dy? = −x dp

TABLE I: Legendre transform pairs and useful relations in the ?y- and y?-convention, both for convex and concave functions.
Notice that for the ?y-convention the Legendre transform is its own inverse, while in the y?-convention there is an additional
minus-to-plus switch in the xp-term. Also notice that in the ?y-convention convexity and concavity does not change upon
transformation, and hence the “min” and “max” is the same for both directions. In the y?-convention convexity and concavity
swap, and so do the “min” and “max”. Notice that when one actually computes the Legendre transforms, one anyways ends
up searching for the derivative in the min- or max-terms, and hence it doesn’t greatly matter whether it actually is a min- or a
max-procedure that is to be implemented. Notice also that the differential relations are rather easy to memorize, and indeed
they are frequently used in thermodynamics.

If we use the alternative definition of the Legendre
transform from Eqn. (8) then—since convexity and con-
cavity swap upon transformation—the Legendre trans-
form of an “almost” convex function is concave and that
of an almost concave function is convex.

3. Inverse of derivatives

The new independent variable of a Legendre transform
is the derivative of the original function:

∂y(x)

∂x
= p(x) . (14a)

What is the derivative of the Legendre transform y? with
respect to its independent variable? Assuming differ-
entiability and convexity of y, we know that y?(p) =
y(x(p))− x(p)p, where x(p) = y′−1(p). Hence,

∂y?(p)

∂p
=
∂y(x)

∂x︸ ︷︷ ︸
p

∂x

∂p
− x(p)− ∂x

∂p
p = −x(p) . (14b)

Since evidently p(x) and x(p) are inverses of each other,
Eqns. (14a) and (14b) show that – up to a minus sign –
y′ and y?′ are also inverse functions of each other:

y?′ = −y′−1 . (15)

Using a slightly more sloppy notation (which, however, is
popular in thermodynamics), we can state this as follows:
If we have a function y(x) and its Legendre transform
q(p) (using thermodynamics convention (8), then we have
the following two matching pair of differentials:

dy = p dx ←→ dq = −xdp . (16)

4. Inverse Legendre Transformation

For convex or concave functions y we have

??y = y . (17)

This says that for convex or concave functions the Leg-
endre transform is its own inverse. This, unfortunately,
is only true for the ?y convention. The inverse for the y?

convention needs to be calculated differently.
Proof: We will be a bit lazy and only prove this for

differentiable functions. Assume without loss of general-
ity that y is convex. In that case we first have

?y(p) = max
x

{
xp− y(x)} = x(p)p− y(x(p)) , (18)

where p(x) = y′(x) and hence x(p) = y′−1(p). Notice
that this is the point where we need convexity: If y(x)
is convex, then y′(x) is monotonic and hence we can
uniquely solve for x(p).

Now, Legendre transforming one more time (and re-
membering that ?y is also convex if y is convex) we get

??y(q) = max
p

{
pq − y?(p)

}
= p(q)q − y?(p(q)) . (19)

Inserting y?(p), we get

y??(q) = p(q)q − y?(p(q))

= p(q)q −
[
x(p(q))︸ ︷︷ ︸

q

p(q)− y(x(p(q))︸ ︷︷ ︸
q

)
]

= y(q) ,

which is what we wanted to prove. �
As it turns out, in the y?-convention it is also necessary

to also swap the sign of the “xp”-term. This can be easily
checked by the same type of calculation with which we
proved what the inverse transform was for the ?y-case.

Table I summarizes the Legendre transform rules in
both conventions, for convex and concave functions.
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5. Preservation of information

The obvious corollary of the previous section is that
Legendre transformations preserve information: If it is
possible to recreate y from y?, then no information can
have gotten lost. Observe, though, that this does only
hold if the function we started with was convex or con-
cave.

Since the Legendre transform still makes sense if we
have local deviations from convexity or concavity (say, an
overall convex function with a local concave “bump”), we
might ask what now happens after two Legendre trans-
forms. The answer is that we recover the convex (con-
cave) envelope of the original function. This finding plays
an important role in the theory of phase transitions.

III. APPLICATION TO THERMODYNAMICS

A. Energy and free energy

In thermodynamics we find that the entropy S as a
function of energy E, volume V , and particle number N
is a thermodynamic potential, meaning that it contains
all the thermodynamic information we can hope for. We
also learn that certain derivatives of the entropy are of
thermodynamic interest, for instance we know that

1

T
=

(
∂S

∂E

)
V,N

, (20)

where T is the temperature. It is then natural to ask
whether we can construct other thermodynamic poten-
tials that contain such derivatives as their natural inde-
pendent variables, and whether we can find them starting
from the entropy. Since we want to replace some variables
by others which are derivatives of the function we start
with, and since we certainly don’t want to lose precious
thermodynamic information along the way, a Legendre
transform appears to be the winning ticket.

To look at the best know example, let us first of all
suppress the volume and particle number dependence
and only look at the energy. Next, instead of looking
at S = S(E), let us look at the inverse thermodynamic
potential E = E(S). (Warning: Some people use a roman
“E” to denote the “exergy”, a different thermodynamic
potential. We don’t.) Since the entropy is monotonic
over the ranges over which (canonical) thermal equilib-
rium can be achieved, this inverse actually exists and we
hence do not lose information. Moreover, we of course
then also have

T =

(
∂E

∂S

)
(V,N)

. (21)

For the reasons outlined above, simply solving this
equation for S as a function of T and the inserting
this into E(S) will not solve the problem. We do get

a correct equation, namely the (caloric) equation of state
E = E(T ), but we lost information along the way, and
hence E(T ) is not a thermodynamic potential anymore.

What we need to do instead is to calculate the Leg-
endre transform of E(S), where T = ∂E/∂S will be the
new variable. Since S(E) is concave, E(S) is convex, and
using the sign-reversed definition of the Legendre trans-
form, we get

E?(T ) = min
S

{
E(S)− TS

}
. (22a)

Notice that in order to actually find the minimum, for
every given value of T , we have to search through all
pairs {S,E(S)}. But obviously we could also look at
all pairs {S(E), E}, thus using the entropy S(E) and
not its inverse E(S) to evaluate the expression in curly
brackets. (If it helps, imagine performing this in a com-
puter program, and changing the loop index needed to
scan through all possible values of the expression in curly
brackets from “S” to “E”.) But this means that we could
just as well write

E?(T ) = min
E

{
E − TS(E)

}
. (22b)

The difference between Eqn. (22a) and Eqn. (22b) is sub-
tle, but well visible in our notation: In both formulas we
have essentially “E − TS”, but in the first we view the
energy as a function of entropy and minimize over all val-
ues of the entropy, in the second we view the entropy as
a function of energy and hence minimize over all values
of the energy.

Of course, in thermodynamics we don’t write the Leg-
endre transform as E?(T ) but instead give it a new sym-
bol. Usually it’s F , but sometimes one also finds A. So
people write F(T ) or simply F (T ) or simply F . And
they call it the (Helmholtz) free energy. From what we
have learned about Legendre transforms, the free energy
contains the same thermodynamic information as the en-
tropy. Our discussion above also shows that it is a con-
cave function of temperature.

Other Legendre transforms are evidently possible, for
instance replacing the volume by the pressure, or the
particle number by the chemical potential, thus leading
to all kinds of other equivalent thermodynamic potentials
with all kinds of names, such as “enthalpy” or “grand
potential”.

B. Relation to Laplace transforms and partition
functions

The entropy S(E) is the logarithm of a function Ω(E),
which is essentially the density of states and a multiplic-
ity N ! divided out:

S(E) = kB ln Ω(E) . (23)

The canonical partition function is the Laplace transform
of Ω(E), and the free energy essentially the logarithm of
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the canonical partition function:

e−βF (T ) = Z(T ) =

∫
dE Ω(E) e−βE . (24)

It is easy to see that the Laplace transform relation be-
tween partition functions translates to a Legendre trans-
form relation between the thermodynamic potentials in
the thermodynamic limit. To see this, we need to Laplace-
evaluate the Laplace transform.

First, we use (23) to rewrite (24):

e−βF (T ) =

∫
dE e−β[E−TS(E)] . (25)

We next need to make extensivity explicit. We will write
E = Nε and S = NsN (ε).

e−βF (T ) =

∫
dε N e−βN [ε−TsN (ε)] . (26)

Notice that sN (ε) still depends on N . All we know is
that if the thermodynamic limit exists, it will converge

against and N -independent value s∞(ε). We can thus
write sN (ε) = s∞(ε) + δsN (ε), where the latter is a func-
tion that decays to zero in the thermodynamic limit. And
thus we are in the position to perform a saddle-point (or
“Laplace”-) evaluation of the integral:

e−βNfN (T ) =

∫
dε N e−βN [ε−Ts∞(ε)−TδsN (ε)]

N→∞∼ N e−βN minε[ε−Ts∞(ε)] (27)

Taking the logarithm and dividing by −βN , we get

f(T ) = min
ε

{
ε− Ts(ε)

}
, (28)

which expresses the now well-known Legendre transform
between the specific energies, entropies and free energies
(for which the limit N →∞ exists).


