33-341 — Thermal Physics I

Department of Physics, Carnegie Mellon University, Fall Term 2018, Deserno

Problem sheet #10

30. A nontrivial (but super instructive) Legendre transform. I. (5 points, due on Monday)

Consider the function $f_a(x)$, which contains a parameter $a \in \mathbb{R}$, and its Legendre transform $f_a^*(p)$:

$$f_a(x) = -\frac{1}{2}ax^2 + \frac{1}{4}x^4 \qquad , \qquad f_a^*(p) = \min_x \left\{ f_a(x) - px \right\}.$$
(1)

Studying the Legendre transform $f_a^*(p)$ is nontrivial, because depending on the value of a the function $f_a(x)$ is not everywhere convex. Always keep in mind that the value of a might qualitatively change the results, so be careful about this.

- 1. Find any minima, maxima, and inflection points of $f_a(x)$. For which values of a is the function always convex? Produce a careful sketch of $f_a(x)$ for typical representative cases, in which these interesting points are visible.
- 2. In order to actually perform the Legendre transform, you need the equation that links p and x. Find it!
- 3. The graph of $f_a^*(p)$ is the collection of points $\{p, f_a^*(p)\}$. Neglecting in a first step the "min" prescription in the Legendre transform, consider the collection of points $\{p(x), f_a(x) - p(x)x\}$, which you can view as a *parametric representation* of the graph of $f_a^*(p)$ (with x being the parameter). Using your favorite plotting program, plot that graph for representative values of a. What happens when you tune a such that $f_a(x)$ ceases to be convex? Which bits of the (possibly funnylooking) graph of $f_a^{\star}(p)$ will "survive" the application of the "min" in the Legendre transform that we have ignored so far? What therefore happens to the Legendre transform $f_a^*(p)$ once $f_a(x)$ deviates locally from convexity?

31. A nontrivial (but super instructive) Legendre transform. II. (5 points, due on Tuesday)

Let's continue with problem 30:

1. If we want to analytically determine $f_a^{\star}(p)$, we need to solve the equation linking p and x for x. This, unfortunately, is a bit messy, but the solution can be written down reasonably neatly. First let's define $r^2 = 4a/3$ and $\cos(3\alpha) = 4p/r^3$. Now show (without using MATHEMATICA or relatives!) that the following three values solve the equation:

$$x_0 = r \cos(\alpha)$$
 , $x_1 = r \cos\left(\alpha + \frac{2\pi}{3}\right)$, $x_2 = r \cos\left(\alpha + \frac{4\pi}{3}\right)$ (2)

Hint: The trigonometric identity $4\cos^3(A) = 3\cos(A) + \cos(3A)$ should come in handy.

- 2. Identify the three solutions with the three interesting branches of the Legendre transform which show up once $f_a(x)$ is no longer convex. Feel free to use your favorite plotting program to do that; no formal proof is required.
- 3. What is $f_a^{\star}(0)$, $\lim_{p\to 0^+} f_a^{\star'}(p)$ and $\lim_{p\to 0^-} f_a^{\star'}(p)$? (Hint: recall what's true about a Legendre transform's derivative!)

32. Maxwell relations and Jacobians in tedious disguise. (5 points, due on Wednesday)

- 1. Prove the first T dS equation: $T dS = Nc_V dT + \frac{\alpha T}{\kappa_T} dV$. 2. Prove the second T dS equation: $T dS = Nc_P dT \alpha TV dP$.

Hint: If you write the entropy $S(\cdot, \cdot, N)$ in the variables indicated by the T dS equation(s), what would be its differential?

33. Adiabatic compression (5 points, due on Friday)

- 1. Show that, quite generally, $\frac{\kappa_T}{\kappa_S} = \frac{c_P}{c_V} =: \gamma$, where γ is called the *adiabatic index*.
- 2. Calculate κ_T , c_V , c_P , and γ for the monoatomic ideal gas.
- 3. Show that adiabatic (constant entropy) compression of an ideal gas leads to a pressure-volume relation $P \propto V^{-\gamma}$.