## 33-341 - Thermal Physics I

## Department of Physics, Carnegie Mellon University, Fall Term 2018, Deserno

## Problem sheet \#10

## 30. A nontrivial (but super instructive) Legendre transform. I. (5 points, due on Monday)

Consider the function $f_{a}(x)$, which contains a parameter $a \in \mathbb{R}$, and its Legendre transform $f_{a}^{\star}(p)$ :

$$
\begin{equation*}
f_{a}(x)=-\frac{1}{2} a x^{2}+\frac{1}{4} x^{4} \quad, \quad f_{a}^{\star}(p)=\min _{x}\left\{f_{a}(x)-p x\right\} \tag{1}
\end{equation*}
$$

Studying the Legendre transform $f_{a}^{\star}(p)$ is nontrivial, because depending on the value of $a$ the function $f_{a}(x)$ is not everywhere convex. Always keep in mind that the value of $a$ might qualitatively change the results, so be careful about this.

1. Find any minima, maxima, and inflection points of $f_{a}(x)$. For which values of $a$ is the function always convex? Produce a careful sketch of $f_{a}(x)$ for typical representative cases, in which these interesting points are visible.
2. In order to actually perform the Legendre transform, you need the equation that links $p$ and $x$. Find it!
3. The $g r a p h$ of $f_{a}^{\star}(p)$ is the collection of points $\left\{p, f_{a}^{\star}(p)\right\}$. Neglecting in a first step the "min" prescription in the Legendre transform, consider the collection of points $\left\{p(x), f_{a}(x)-p(x) x\right\}$, which you can view as a parametric representation of the graph of $f_{a}^{\star}(p)$ (with $x$ being the parameter). Using your favorite plotting program, plot that graph for representative values of $a$. What happens when you tune $a$ such that $f_{a}(x)$ ceases to be convex? Which bits of the (possibly funnylooking) graph of $f_{a}^{\star}(p)$ will "survive" the application of the "min" in the Legendre transform that we have ignored so far? What therefore happens to the Legendre transform $f_{a}^{\star}(p)$ once $f_{a}(x)$ deviates locally from convexity?

## 31. A nontrivial (but super instructive) Legendre transform. II. (5 points, due on Tuesday)

Let's continue with problem 30:

1. If we want to analytically determine $f_{a}^{\star}(p)$, we need to solve the equation linking $p$ and $x$ for $x$. This, unfortunately, is a bit messy, but the solution can be written down reasonably neatly. First let's define $r^{2}=4 a / 3$ and $\cos (3 \alpha)=4 p / r^{3}$. Now show (without using MATHEMATICA or relatives!) that the following three values solve the equation:

$$
\begin{equation*}
x_{0}=r \cos (\alpha) \quad, \quad x_{1}=r \cos \left(\alpha+\frac{2 \pi}{3}\right) \quad, \quad x_{2}=r \cos \left(\alpha+\frac{4 \pi}{3}\right) \tag{2}
\end{equation*}
$$

Hint: The trigonometric identity $4 \cos ^{3}(A)=3 \cos (A)+\cos (3 A)$ should come in handy.
2. Identify the three solutions with the three interesting branches of the Legendre transform which show up once $f_{a}(x)$ is no longer convex. Feel free to use your favorite plotting program to do that; no formal proof is required.
3. What is $f_{a}^{\star}(0), \lim _{p \rightarrow 0^{+}} f_{a}^{\star^{\prime}}(p)$ and $\lim _{p \rightarrow 0^{-}} f_{a}^{\star \prime}(p)$ ? (Hint: recall what's true about a Legendre transform's derivative!)

## 32. Maxwell relations and Jacobians in tedious disguise. (5 points, due on Wednesday)

1. Prove the first $T \mathrm{~d} S$ equation: $T \mathrm{~d} S=N c_{V} \mathrm{~d} T+\frac{\alpha T}{\kappa_{T}} \mathrm{~d} V$.
2. Prove the second $T \mathrm{~d} S$ equation: $T \mathrm{~d} S=N c_{P} \mathrm{~d} T-\alpha T V \mathrm{~d} P$.


Hint: If you write the entropy $S(\cdot, \cdot, N)$ in the variables indicated by the $T \mathrm{~d} S$ equation(s), what would be its differential?

## 33. Adiabatic compression (5 points, due on Friday)

1. Show that, quite generally, $\frac{\kappa_{T}}{\kappa_{S}}=\frac{c_{P}}{c_{V}}=: \gamma$, where $\gamma$ is called the adiabatic index.
2. Calculate $\kappa_{T}, c_{V}, c_{P}$, and $\gamma$ for the monoatomic ideal gas.
3. Show that adiabatic (constant entropy) compression of an ideal gas leads to a pressure-volume relation $P \propto V^{-\gamma}$.
