33-341 - Thermal Physics I

Department of Physics, Carnegie Mellon University, Fall Term 2018, Deserno

Problem sheet \#5

15. Averaging helps. Until it doesn't (6 points, due on Monday)

While measuring some observable in an experiment, you collect a sequence of numbers $\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}$, which you may think of as independent random variables drawn from some p-density $p_{X}(x)$. You are interested in the mean of that distribution. To reduce the noise in each individual measurement, you decide to calculate the arithmetic average of N measurements:

$$
\begin{equation*}
\bar{X}_{N}:=\frac{1}{N} \sum_{i=1}^{N} X_{i} \tag{1}
\end{equation*}
$$

Being the sum of N random variables, this is still a random variable! It is obvious that $\left\langle\bar{X}_{N}\right\rangle_{p_{X}}=\left\langle X_{i}\right\rangle_{p_{X}}$, but you hope that \bar{X}_{N} scatters less around that mean than each individual X_{i}. Let us see whether your hope is justified.

1. Assume the $\left\{X_{i}\right\}$ come from a normal distribution with zero mean and unit variance, $p(x)=\mathrm{e}^{-x^{2} / 2} / \sqrt{2 \pi}$. Extend the program from problem (12) so that it creates a histogram of \bar{X}_{N} values, for various values of N. That is, draw N random numbers X_{i}, calculate \bar{X}_{N}, repeat this process trials number of times, and make a histogram of the trials \bar{X}_{N} values thus calculated. Plot this histogram together with the p-density of a single X_{i}. Is the histogram more narrow?
2. Same as (1), but assume that the $\left\{X_{i}\right\}$ instead come from a Cauchy-Lorentz distribution $p(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.

16. Error propagation (7 points, due on Wednesday)

Consider a collection of random variables $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, from which we calculate a function of interest, $F(\boldsymbol{X})$. Assume we know all expectation values $\left\langle X_{i}\right\rangle$ and all covariances $C_{i j}:=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\left\langle\left(X_{i}-\left\langle X_{i}\right\rangle\right)\left(X_{j}-\left\langle X_{j}\right\rangle\right)\right\rangle$.

1. Taylor-expand F to second order around $\langle\boldsymbol{X}\rangle$. Now take the average and show how $\langle F(\boldsymbol{X})\rangle$ differs from $F(\langle\boldsymbol{X}\rangle)$.
2. For the special case of $n=1$ and a convex F, show that your result is consistent with Jensen's inequality!
3. The variance of F is given by $\sigma_{F}^{2}=\left\langle[F(\boldsymbol{X})-\langle F(\boldsymbol{X})\rangle]^{2}\right\rangle$. Simplify this by replacing F with its first order Taylor expansion. Show further that if all X_{i} are uncorrelated, you end up with the "standard" formula for error propagation!

17. Sum of random variables and the characteristic function (7 points, due on Friday)

Assume you have two continuous independent random variable X and Y with p-densities $p_{X}(x)$ and $p_{Y}(y)$, respectively. Define the random variable $Z=X+Y$ and call its p-density $p_{Z}(z)$.

1. Show that the p-density $p_{Z}(z)$ is the convolution of the p -densities $p_{X}(x)$ and $p_{Y}(y)$:

$$
\begin{equation*}
p_{Z}(z)=\int_{-\infty}^{\infty} \mathrm{d} x p_{X}(x) p_{Y}(z-x) \tag{2}
\end{equation*}
$$

2. The characteristic function $\tilde{p}_{X}(k)$ of a random variable X is defined to be the Fourier transform of its p-density $p_{X}(x)$:

$$
\begin{equation*}
\tilde{p}_{X}(k):=\left\langle\mathrm{e}^{\mathrm{i} k X}\right\rangle=\int_{-\infty}^{\infty} \mathrm{d} x p_{X}(x) \mathrm{e}^{\mathrm{i} k x} \tag{3}
\end{equation*}
$$

a) If the moments of X are written as $\mu_{n}:=\left\langle X^{n}\right\rangle$, show that the Taylor expansion of $\tilde{p}_{X}(k)$ is given by

$$
\begin{equation*}
\tilde{p}_{X}(k)=1+\mathrm{i} \mu_{1} k-\frac{1}{2} \mu_{2} k^{2}-\frac{1}{6} \mathrm{i} \mu_{3} k^{3}+\frac{1}{24} \mu_{4} k^{4} \cdots . \tag{4}
\end{equation*}
$$

b) Show that the characteristic function of $Z=X+Y$ is the product of the characteristic functions of X and of Y :

$$
\begin{equation*}
\tilde{p}_{Z}(k)=\tilde{p}_{X}(k) \tilde{p}_{Y}(k) \tag{5}
\end{equation*}
$$

