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1 Introduction

These notes are intended to supplement, and in one instance correct, the material on
Lagrangian and Hamiltonian formulations of mechanics found in Thornton and Marion Ch. 7.

2 Partial derivatives

⋆ When there are several independent variables it is easy to make mistakes in taking
partial derivatives. The fundamental rule is: always know which set of independent variables
is in use, so that you are sure which are being held fixed during the process of taking a partial
derivative.

⋆ A simple example will illustrate the problems that await the careless. Start with

f(x, y) = 2x + y; ∂f/∂x = 2. (1)

But suppose we prefer to consider f as a function of x and z = x + y. Then

f(x, z) = x + z; ∂f/∂x = 1. (2)

• How can we avoid drawing the silly conclusion that 1 = 2? In particular, is there some
helpful notation that will warn us? Indeed, there are (at least) two approaches to difficulties
of this sort.
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• Approach 1. Never use the same symbol f for two different functions. That is, f(·, cdot)
should always in a given discussion refer to a well-defined map from two real arguments to
a real number. You give me the first and second arguments of f as two real numbers, and I
will give you back another real number which I have looked up in a table. E.g., f(0.2, 1.7)
is always equal to 2.1. Period.

– In approach 1, we would never be so careless as to write down both (1) and (2), because
the first tells us that f(1, 0) = 2 and the second that f(1, 0) = 1, and nonsense gives rise to
nonsense. What we should have done is to write f̄ in place of f in (2), and then there is no
problem when ∂f/∂x is unequal to ∂f̄/∂x.

• Approach 2. Approach 1 is not popular with physicists, though perhaps it should
be. The reason is that the symbols which occur in the equations of physics tend to refer
to specific physical quantities. Thus in thermodynamics E (or U) refers to energy, T to
temperature, V volume, P pressure, and so forth. Sometimes it is convenient to think of
E as a function of T and V , and sometimes as a function of T and P , and sometimes as a
function of other things. The habit of the physicist is to identify which function is under
discussion by giving appropriate labels to the arguments. Thus E(T, V ) is not the same
function as E(T, P ), and it is obvious (to the physicist) which is which, and if he sometimes
writes E(V, T ) instead of E(T, V ), what is wrong with that?

◦ Nothing is wrong with this approach, but when you write ∂E/∂T , what do you mean
by it? Are you thinking of E(T, V ) or E(T, P )? The two partials are not the same (except
in special cases), and how are we to avoid confusion?

⋆ One standard way to avoid confusion is to use subscripts. Thus

(

∂E

∂T

)

V

(3)

means the partial derivative of energy with respect to temperature while the volume is held
fixed. Or, to put it in other terms, the labels T and V , which told us which function we
were referring to when writing E(T, V ) are again evident, one as the ∂T denominator and
the other as a subscript.

• The subscript notation is effective but cumbersome. E.g., suppose the physical chemist
is concerned with a system in which there are N1 moles of species 1, N2 moles of species 2,
. . .Nr moles of species r. Then a partial derivative of E(T, V,N1, . . . Nr) might be written
as

(

∂E

∂Nj

)

T,V,N1,...Nj−1,Nj+1...Nr

(4)

which is perfectly clear, but takes a lot of time to write down.

⋆ So in practice what happens is that the subscript list is often omitted, and which
other variables are being held constant has to be determined from the context.

• Thus ∂L/∂q̇j in TM always means the variable list is q1, q2, . . . qs, q̇1, q̇2, . . . q̇s, t, because
by convention the Lagrangian L depends on these variables. We could make it depend on
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some other set of variables, but then it would be a good idea to warn people, perhaps by
replacing L with L̄ or some such.

• A similar convention applies to the Hamiltonian H. When one writes ∂H/∂qj it is
always understood that the full variable list is q1, q2, . . . qx, p1, p2, . . . ps, t, and thus one is
thinking of H(q1, q2, . . . qx, p1, p2, . . . ps, t), and thus

∂H

∂qj

means

(

∂H

∂qj

)

q1,...qj−1,qj+1,...p1,...ps,t

(5)

And of course the same variable set is in mind whenever one writes ∂H/∂pj.

• This is what is behind the insistence of Thornton and Marion that one always write
the Hamiltonian as a function of the q’s and p’s, and not of the q’s and q̇’s. That is, at
this point they are employing Approach 1 to the problem of avoiding confusion when taking
partial derivatives.

⋆ Let us see how this works in the case of a simple example: going from a Lagrangian
to a Hamiltonian when there is only 1 degree of freedom, and we are considering a harmonic
oscillator

L = L(x, ẋ) = (m/2)ẋ2 − (k/2)x2; p = ∂L/ẋ = mẋ. (6)

◦ In this case ∂L/∂t = 0, and there is no harm in simply omitting the t argument from
out list.

• Now define “the Hamiltonian” using the formula

H̄(x, ẋ) = ẋ∂L/∂ẋ − L = (m/2)ẋ2 + (k/2)x2, (7)

where we are being careful to distinguish the function H̄ from the same quantity expressed
as a different function

H(x, p) = p2/2m + (k/2)x2 = H̄(x, ẋ(x, p)). (8)

3 The difference between ∂L/∂t and dL/dt

⋆ Students of mechanics are often confused about the difference between ∂L/∂t and
dL/dt. They are very different quantities, and it is important to understand just what is
meant in each case. It will suffice to consider the case where there is a single (generalized)
coordinate q with time derivative q̇, and a Lagrangian

L(q, q̇, t) = (m/2)q̇2 − (1 + a cos bt)kq2, (9)

where k, a and b are constants.

• When considering partial derivatives of L one should take the perspective that all the
other arguments of L are being held fixed when this one is varied. If one were to write
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L(α, β, γ), a function of three real variables, there would be no doubt at all as to what
∂L/∂γ means: it means the derivative of L with respect to γ with α and β held fixed.

◦ So to find ∂L/∂t for L in (9) we should hold q and q̇ absolutely constant while carrying
out the derivative with respect to t. Consequently,

∂L/∂t = abk(sin bt)q2. (10)

◦ But what does this correspond to physically? Well, it might be that the spring of the
harmonic oscillator is subject to some oscillating draft of air which makes its temperature
go up and down, and therefore varies the spring constant. But surely one would not expect
both q and q̇, position and velocity, to remain fixed while the temperature varied? Indeed,
one would not, and this is a case where one should carry out the math as prescribed by
the symbols, and not try and interpret it as a physical process. Instead ∂L/∂t is a formal
operation.

• Sometimes the situation ∂L/∂t = 0 is described as one in which the Lagrangian has no
explicit time dependence. This terminology is fine if one knows what it means. E.g., because
of the cos bt term the Lagrangian in (9) has an explicit time dependence.

⋆ By contrast, when using the symbol dL/dt we always have in mind a situation where
a definite path q(t) is specified. Given this path, we can of course compute q̇(t), and insert
q(t) and q̇(t) into the Lagrangian as its first two arguments. This way L will (in general)
change in time even in the case where ∂L/∂t = 0, and of course if ∂L/∂t 6= 0 this can be
yet another source of time dependence.

• Consider (9) with a = 0: the oscillator will oscillate, and the value of L will oscillate
in time, even though ∂L/∂t = 0.

2 Exercise. Check this by working out dL/dt for L in (9), assuming a = 0 but that the
oscillator is not stationary at the origin.

• Analogy. The elevation at some fixed geographical point in Western Pennsylvania is, to
a fairly good approximation, independent of time. Think of this as the Lagrangian. When
you go on a hike, however, and feed your coordinates into this “Lagrangian,” your elevation
will vary with time because your geographical position is shifting. To be sure, if you have
the misfortune of walking over a subsiding coal mine there might be a ∂L/∂t contribution
as well.

⋆ All of this generalizes in an obvious way to the case where there is more than one
generalized coordinate. When calculating ∂L/∂t one must hold every qj and every q̇j fixed.
When calculating dL/dt one must be thinking about a collection of functions qj(t), and
insert them and their time derivatives as appropriate arguments in L to determine its time
dependence.

⋆ The same comments apply in an obvious way to the difference between ∂H/∂t and
dH/dt, except that when taking the partial derivative ∂H/∂t the variables held fixed are the
q’s and the p’s; see the discussion in connection with (19) below.
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4 Differentials

⋆ The use of differentials speeds up certain formal derivations when one is dealing with
functions of several independent variables, especially if one is changing from one independent
set to another. The approach can be made mathematically rigorous; see Courant. The
perspective here is a bit different from that of Courant, but for our purposes it will work
equally well.

⋆ We choose illustrations from thermodynamics, where the use of differentials is common,
and focus on a system with two independent variables, which could be the entropy S and
the volume V , or temperature T and volume V , or S and pressure P , etc. For the following
discussion the exact significance of the symbols is not important. We denote the energy
by E, using that in preference to U because U is used by TM for potential energy. The
thermodynamic energy E is the total kinetic plus potential energy of a system of particles
in thermodynamic equilibrium, in which case E is some well-defined function of S and V ,
and in the standard notation one writes

dE = T dS − P dV, (11)

where dE, dS, and dV are examples of differentials. How are we to understand this equation?

• A useful way of understanding it is to suppose that a path is defined in the space of
independent variables S and V by giving each as a function of some parameter t, which can
be thought of intuitively as the time, provided nothing is varied so rapidly as to take the
system out of thermodynamic equilibrium. However, it really need not represent the time.
All we want is that S and V are smooth functions of t, and we never allow the path to stop,
i.e., for every t either dS/dt or dV/dt is nonzero.

◦ And how does E vary along this path? Since it is a function of S and V , we write

dE

dt
=

(

∂E

∂S

)

V

dS

dt
+

(

∂E

∂V

)

S

dV

dt
, (12)

using the usual chain rule. This is the same as (11) if we make the identifications

T =

(

∂E

∂S

)

V

, P = −

(

∂E

∂V

)

S

(13)

and then divide both sides of (11) by dt.

◦ Hence (11) may be regarded as an abbreviation for (12) and (13) taken together, with
the advantage that it says things in a very compact way. Note in particular that if we choose
a path on which V does not change, the dV term in (11) is equal to zero, and dividing both
sides by dS we arrive at the first of the two relations in (13); likewise by setting dS equal
to zero we arrive at the second term in (13). So we have at the very least a nice device for
memorizing the physical significance of certain partial derivatives without having to write
them out in longhand.
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⋆ But the real power of differentials emerges when we change independent variables, as
in a Legendre transformation. Let the Helmholtz free energy be written as

F = E − TS. (14)

Now watch:
dF = dE − T dS − S dT = −S dT − P dV, (15)

where d(TS) = TdS + SdT is obvious if you divide through by dt, and the second equality
in (15) employs the earlier differential relation (11). From (15) we see at once that if we
express F as a function of T and V , then it is the case that

S = −

(

∂F

∂T

)

V

, P = −

(

∂F

∂V

)

T

. (16)

• Whereas one can derive the results in (16) from those in (13), given the definition of F
in (14), in a moderately straightforward manner by means of chain rule arguments, the use
of differentials is faster, and also good mathematics if one follows Courant, or if one divides
through by dt in the manner indicated above.

◦ There are, to be sure, questions about starting with (13) and solving for S as a single-
valued, well-defined and differentiable function of T and V in order to obtain F as a function
of these variables using (14). We shall not address these issues here. Courant again has an
accessible treatment. Typical physicists simply go ahead without checking, until they get
into trouble.

⋆ Back to mechanics, where with L the Lagrangian we write its differential as

dL =
∑

j

pj dq̇j +
∑

j

(∂L/∂qj) dqj + (∂L/∂t) dt, (17)

noting that pj is defined to be ∂L/∂q̇j, so this equation merely summarizes names of partial
derivatives, and tells us that the independent variables we are concerned with are those
whose differentials appear on the right hand side.

• Then we introduce the analog of the thermodynamic E to F transformation above,
except for a sign change, writing the Hamiltonian as

H =
∑

j

pj q̇j − L. (18)

Next take its differential:

dH =
∑

j

pj dq̇j +
∑

j

q̇j dpj − dL =
∑

j

q̇j dpj −
∑

j

(∂L/∂qj) dqj − (∂L/∂t) dt

=
∑

j

q̇j dpj −
∑

j

ṗj dqj − (∂L/∂t) dt (19)
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where the second equality employs (17) and the final one invokes the Lagrange equations
∂L/∂qj = dpj/dt. The right side of (19) at once identifies the significance of the partial
derivatives of H when written as a function of the q’s and p’s. It is actually a compact way
of writing the Hamiltonian equations of motion, and has the advantage that it leaves us in
no doubt about which variables are being held fixed when we take partial derivatives. It also
tells us that ∂H/∂t = −∂L/∂t.

5 Flows in phase space. Liouville’s theorem

⋆ Phase space. It is customary to refer to the 2s-dimensional space of Hamiltonian
mechanics, spanned by (q1, q2, . . . qs, p1, p2, . . . ps) = (~q, ~p), as phase space in contrast to the
s-dimensional configuration space of the Lagrangian formulation. A point in this phase space
moves in time with a “velocity” vector

~v = (q̇1, q̇2, . . . q̇s, ṗ1, ṗ2, . . . ṗs) = (~̇q, ~̇p), (20)

which has 2s components. The velocity at any point in phase space is determined by the
Hamilton equations of motion:

q̇j = ∂H/∂pj, ṗj = −∂H/∂qj (21)

As the velocity is well-defined, a point in phase space representing the mechanical state of a
system at some time t0 follows a well-defined “trajectory” at all later (and earlier) times.

◦ As an example, consider a harmonic oscillator, where the trajectories are ellipses cen-
tered on the origin of the 2-dimensional (s = 1) phase space.

⋆ Let R be some collection of points in the phase space which constitute a region with
well-defined boundaries. Then its “volume” can be written as a 2s-dimensional integral

V(R) =

∫

R

dq1 dq2 · · · dqs dp1 dp2 · · · dps (22)

⋆ Of course the collection of all the points that are in a region R0 at time t0 will at
some later time t1 be found in some other region R1 determined by solving the equations of
motion. Liouville’s theorem states that

V(R0) = V(R1), (23)

whatever the initial region R0—assuming, of course, that the integral in (22) is well-defined—
and whatever the times t0 and t1.

◦ This is even true when the Hamiltonian is a function of time.

⋆ One way of stating Liouville’s theorem is as follows. The time transformation from t0
to t1 produces an invertible map of the phase space onto itself. Associated with this map is
a Jacobian. What Liouville says is that this Jacobian is equal to 1.
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• For a proper mathematical proof of Liouville’s theorem from this perspective see
Gallavotti.

⋆ The essential geometrical idea behind Liouville’s theorem can be stated in the following
way: the velocity ~v defined in (20) as a function of position in the phase space, i.e., ~v(~q, ~p),
has zero divergence

∇~v =
∑

j

(

∂q̇j

∂qj

+
∂ṗj

∂pj

)

= 0. (24)

2 Exercise. Carry out the proof of (24). Consider a particular j in the sum, and use the
fact that ∂2H/∂qj∂pj = ∂2H/∂pj∂qj.

• An incompressible fluid has a velocity field (in 3 dimensions) with zero divergence. And
of course if the particles of such a fluid occupy a region R0 at time t0 they will occupy a
region R1 of equal volume at time t1, or else the density would be different. Liouville is the
2s-dimensional generalization of this, and one often says that the flow in phase space of a
mechanical system with a Hamiltonian is “incompressible.”

⋆ The perspective in TM is slightly different, and can be thought of in the following
way. Suppose one has an enormous number of identical mechanical systems—same phase
space, same Hamiltonian—but with different initial conditions. Then it is plausible that one
can assign a “density” ρ, i.e., a number per unit “volume” in the phase space in the sense
of (22) Given density and velocity in the phase space, we form the current density ~J

~J = ρ~v, (25)

This is the analog of a mass current density in fluid dynamics. Since the total number of
systems represented by points in the phase space does not change as a function of time, we
expect ~J to satisfy a conservation law

∂ρ/∂t = −∇ · ~J, (26)

which is the analog of mass conservation in a fluid, including the compressible kind. Charge
conservation in electricity leads to the same type of equation. Thus we expect (but have not
proved) that an equation of the form (26) will also hold in phase space.

◦ Indeed, Eqn. (7.195) on p. 277 of TM is precisely (26), and is correct, as are the
conclusions they draw later down on that page. Their derivation of Eqn. (7.195), on the
other hand, is badly flawed, even by the standards of physicists.

⋆ The final result in TM, their (7.198),

dρ/dt = 0, (27)

is to be interpreted in the following way. Think of ρ as a function of the q’s and p’s, ρ(~q, ~p, t).
Then given ~q(t) and ~p(t) as functions of time on some phase space trajectory that satisfies the
equations of motion, one can insert these in ρ, and ρ(~q(t), ~p(t), t) is, somewhat surprisingly,
independent of time. Even though ∂ρ/∂t at some fixed point in phase space will in general
depend on the time.
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◦ One thinks of the group of 40 wealthy retired folk from Philadelphia who went together
on a trip around around the world and were surprised to find American tourists everywhere
they went.

• The result (27) is, at least intuitively, equivalent to Liouville’s theorem in the form
(23). The reason is that if phase space volume is preserved as time progresses, the number
of points representing different systems in the region R1 will be the same as the number of
points in R0, and since density ρ is number per unit volume, the density will remain fixed.
Conversely, if one knows that ρ is fixed as a function of time in the sense of (27), i.e., in the
vicinity of a point moving in phase space in accordance with Hamilton’s equations, then the
volume occupied by a set of points must remain fixed.
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