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1 Principle of Equivalence

⋆ Principle of equivalence: The inertial mass m in F = ma is the same as the gravita-

tional mass m in F = mg or F = −GmM/R2. This is a highly nontrivial observation which
has been the subject of careful experimental tests, and is fundamental to the general theory
of relativity.

⋆ Consider astronauts in a closed box at rest in a uniform gravitational field g. There is
absolutely no way (without going outside the box) they can distinguish this situation from
one in which the box is in zero gravitational field but is being pushed by a rocket in such a
way that it is accelerated with acceleration g.

⋆ Similarly, if a closed box is falling freely, thus accelerating, in a uniform gravitational
field, someone inside the box cannot distinguish this situation from one in which the box is
at rest in empty space.

• One way to express this is in terms of the gravitational potential Φ(r). In a uniform
gravitational field of strength gu we have

Φ(x, y, z) = guz, (1)

where the z coordinate is in the opposite direction to the gravitational acceleration. However,
in an accelerated coordinate system with acceleration gu in the negative z direction, the
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gravitational potential is Φ′ = 0 (or Φ′ = C for some constant C). Thus a gravitational
potential of the form (1) can be removed by shifting to a suitable accelerated coordinate
system in which a freely-falling body is at rest.

2 Nonuniform Gravity

⋆ Suppose the closed box containing the astronauts is at rest on the surface of a spher-
ically symmetrical asteroid of mass Ma and radius Ra that is not rotating. If the surface
gravitational acceleration of the asteroid is g, can clever astronauts distinguish this situation
from being pushed by a rocket with uniform acceleration g?

• Yes they can. A pendulum suspended near the top of the box will have a slightly
different period from one suspended near the bottom. A plumb line on the left side will not
be exactly parallel to one on the right.

• These small deviations from what occurs in a perfectly uniform gravitational field are
said to be due to tidal forces, i.e., this is what one means by the term “tidal force.” Since
tidal forces are really gravitational forces, they are proportional to m and are, in effect,
accelerations.

⋆ Next imagine a small cloud of dust, of such low density that the gravitational attraction
of the dust particles for each other can be ignored, that is initially at rest some distance above
the surface of the asteroid, and starts to fall freely towards its center. Each dust particle
will be accelerated with the gravitational acceleration g that corresponds to its location,
independent of what is happening to the other particles.

• If we use an accelerated coordinate system C in which a reference particle in the middle
of the cloud is at rest, then in C the other dust particles will appear to be accelerated by
small amounts which can be ascribed to tidal forces.

• The tidal force on the reference dust particle is by definition zero, since we are using
a coordinate system in which this particle is at rest. A dust particle below the reference
particle (i.e., closer to the asteroid) will behave (in the coordinate system C) as if it is
being accelerated downwards, one above the reference particle will behave as if it is being
accelerated upwards, while particles on either side of the reference particle, at the same
height above the asteroid, will behave as if they are being accelerated towards the reference
particle.

2 Exercise. Verify all of these statements. Can you make them quantitative in terms of
how the tidal forces or accelerations vary with distance from the reference dust particle?

3 Quantitative Tidal Forces

⋆ Set up a Cartesian coordinate system x, y, z with origin at the center of the astronaut’s
box resting on the surface of the asteroid, with z pointing away from the center of the asteroid.
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Expand Φ(x, y, z), the gravitational potential due to the asteroid, as a power series for small
values of x, y, and z:

Φ(x, y, z) = C + gz + b
[

(x2 + y2)/2 − z2
]

, (2)

where we are ignoring third and higher order terms, such as x3 or xz2. Recall that the
gravitational force on a mass m is F = −m∇Φ i.e., the gravitational acceleration is g =
−∇Φ. Here C is a constant whose value is of no particular interest, so we could set it equal
to zero.

◦ The linear gz term in (2) tells us that at the center of the box the gravitational
acceleration is g in a direction downwards towards the center of the asteroid. This is why
there are no terms linear in x or y, i.e., z is the vertical direction.

• The form of the quadratic terms in (2) is determined by two considerations. The first
is symmetry: Φ is invariant under rotation about the z axis. This means that the xy, xz,
and yz terms must be absent, and the coefficient of x2 must be the same as that of y2. So
the quadratic contribution to Φ must be of the form a(x2 + y2) − bz2 with suitable choices
of a and b, which could be positive or negative.

2 Exercise. Explain how symmetry gets rid of the xy, xz, and yz terms in (2).

• In addition, Φ(x, y, z) satisfies ∇2Φ = 0 everywhere outside the asteroid, since Φ is
the gravitational potential of the asteroid, and outside the asteroid its mass density is zero.
This means that a = b/2.

2 Exercise. Show it.

◦ To be sure, there will be a contribution to the total gravitational potential from the
box and its contents, but we are ignoring this. Astronauts making extremely precise mea-
surements might have to take it into account.

• The quadratic terms in (2) are often said to represent a quadrupole force or potential,
because of the way this part of Φ varies with angle on the surface of a sphere of radius
r =

√

x2 + y2 + z2. It involves an l = 2 spherical harmonic, in contrast to the dipole term
gz, which involves an l = 1 spherical harmonic.

⋆ At a distance R from the center of the asteroid its gravitational potential is Φ =
−GM/R, provided R > Ra, the radius of the asteroid. From this it follows that

g = GM/R2, b = GM/R3, (3)

when the origin of coordinates in (2) is at some R > Ra.

◦ Note that b has dimensions of acceleration/length, or inverse time squared.

2 Exercise. Derive the expressions in (3)

⋆ One can also use (2) for the gravitational potential inside the dust cloud above the
asteroid surface introduced in Sec. 2, where the origin of coordinates is the reference particle
at the center of the cloud.

• However, if one uses the accelerated coordinate system C in which the reference dust
particle is at rest it is necessary to replace Φ in (2) with a potential Φ′ in which the gz term
is set equal to zero, while the other (“tidal”) terms remain the same.
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• One can then check that the tidal forces, or accelerations, given by −∇Φ′ have the
same general character discussed at the end Sec. 2. In particular, because b is positive, the
forces in the z = 0 plane are “attractive” and dust particles are accelerated towards the
reference particle, whereas along the z axis they are “repulsive.”

2 Exercise. Compare the tidal accelerations given by −∇Φ′ with those obtained by
simply assuming each dust particle is being accelerated towards the center of the asteroid,
independent of all the other dust particles. (See the exercise at the end of Sec. 2.)

4 Tidal Effects of the Moon on the Earth

⋆ We will discuss the tidal effect of the moon at the surface of the earth by writing the
total gravitational potential as

Φ = Φm + Φe, (4)

where Φm is the contribution from the matter making up the the moon, and Φe from that
making up the earth.

• Choose a coordinate system x, y, z whose origin is the center of the earth, with the
negative z axis passing through the center of the moon. Then we can expand Φm for values
of x, y, and z small compared to the distance D between the earth and the moon in the form
(2), since in the vicinity of the earth ∇2Φm = 0, with g set equal to gm, the acceleration at
the position of the earth produced by the moon’s gravity.

• However, in choosing the origin of coordinates at the center of the earth, we are actually
using an accelerated coordinate system, since the center of the earth is accelerating towards
the moon with an acceleration gm. Therefore, we should use a gravitational potential

Φ′

m(x, y, z) = b(x2 + y2)/2 − bz2, (5)

where
b = GMm/D3 = 8.66 × 10−14 s−2. (6)

◦ For more on this accelerated coordinate system, see Sec. 5 below.

2 Exercise. Check the numerical value of b using appropriate values for Mm and D.
(They appear in an equation on p. 203 of TM.)

⋆ The earth’s gravitational potential is given by Φe = −GMe/r, as long as r =
√

x2 + y2 + z2 is greater than the radius Re of the earth. Adding this to Φ′

m gives the
total gravitational potential

Φ′ = b(x2 + y2)/2 − bz2
− geR

2

e/r, (7)

where we have replaced GMe with geR
2

e/r, where ge = 9.8 m s−2 is the gravitational ac-
celeration at the earth’s surface. The prime on Φ′ reminds us we are using an accelerated
coordinate system.
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⋆ Imagine that the solid earth is a perfect sphere of radius Re, that it is not rotating,
and is entirely covered by a thin ocean. What will be the shape of the top of the ocean in the
presence of tidal forces from the moon? It will be an equipotential surface Φ′ = constant,
since otherwise water would flow down the potential gradient.

• Let us assume that the distance of the ocean surface from the center of the earth is

r = Re + h, (8)

where h ≪ Re depends on the geographical location. By symmetry, given our idealized
earth, h can only depend upon θ, the angle from the +z axis in polar coordinates, with
θ = 180◦ the direction to the moon.

• Inserting (8) in (7), using the fact that h/Re is small, and setting Φ′ equal to a constant
we arrive at

h(θ) = h0 + (bR2

e/ge)(cos2 θ − 1

2
sin2 θ), (9)

where the numerical value of bR2

e/ge is 0.36 m.

2 Exercise. Fill in the details in the derivation of (9).

2 Exercise. Using (6), check the numerical value of bR2

e/ge.

• What (9) tells us is that the surface of the ocean on our nonrotating earth is 0.36 m
higher than average at both θ = 180◦ and θ = 0, which is to say right under the moon and on
the opposite side of the earth from the moon, and 0.18 m lower at the intermediate θ = 90◦

points, with a total variation in height of 0.54 m.

⋆ But of course the real earth rotates, and it carries the real oceans along with it.
So what does the above have to do with the real tides? Good question. The basic point
is that the tidal forces due to the moon, which produce the bulging of the ocean in our
idealized model, will be pulling and pushing the real oceans as the earth rotates under the
real moon, so that pressure gradients will be produced which drive the water in the oceans
with a period of about half a day, as seen from a rotating earth, which is what is observed.
Our calculation explains this period through the fact that the tidal forces produced by the
moon have a quadrupole character: the ocean is not only pulled upwards on the side of the
earth directly under the moon, as one might have expected, but also pushed upwards on the
opposite side of the earth.

5 Accelerated Coordinate System

⋆ One might worry that the transformation from Φm to Φ′

m in (5) could be invalid
because the direction of the acceleration due to the moon’s gravity is changing in time, since
the moon is moving. It is therefore helpful to construct the accelerated coordinate system
explicitly and check what is going on. For simplicity we ignore the sun, and assume the
earth and moon are rotating around their common center of mass.

◦ The notation differs from TM Sec. 5.5, but the basic idea is the same.
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• Let R = (X,Y, Z) be an inertial coordinate system. It is convenient, though not
necessary, to assume its origin is the center of mass of the earth-moon system. It is not
rotating, i.e., the stars are always in the same direction.

• Let r = (x, y, z) be a coordinate system whose origin is at the center of the earth, but
whose orientation is the same as the R system, thus the two are related by

r = R − Re(t) : x = X − Xe(t), y = Y − Ye(t), z = Z − Ze(t), (10)

where Re = (Xe, Ye, Ze) is the position of the center of the earth in the R coordinate system.
It follows that velocities and accelerations in the r and R systems are related by

v = V − Ve(t), a = A − Ae(t), (11)

in an obvious notation.

⋆ The total gravitational potential Φ(R, t) as a function of the inertial coordinates R

will be a function of time because both the earth and the moon, which are the sources of the
gravitational potential, are moving. The gravitational acceleration at a given time is given
by

G = −∇Φ. (12)

◦ We are using a nonrelativistic approximation in which light and gravity travel with
infinite speed. This is adequate for our calculations, though not for NASA’s.

• Now define the modified gravitational potential

Φ′(r, t) = Φ′(x, y, z, t) = Φ(r + Re, t) + Ae · r. (13)

Note that Ae, the acceleration of the center of the earth, is a function of time but not of
position.

• It follows from (13) that

G′ = −∇Φ′ = G − Ae, (14)

that is, if we use Φ′ in place of Φ, we will get exactly the same acceleration, except for
subtracting off that of the center of the earth.

◦ A slightly subtle point. The ∇ in (14) is (∂/∂x, ∂/∂y, ∂/∂z), whereas in (12) it is
(∂/∂X, ∂/∂Y, ∂/∂Z). But it follows from (10), along with the fact that the partial derivatives
are taken with time fixed, that ∂/∂x = ∂/∂X, etc., so it is safe to use the same symbol ∇
in both places.

⋆ Thus the fact that the moon is moving does not alter our analysis in Sec. 4 when we
go from Φ to Φ′. However, the moon’s motion means the tidal forces will change with time
in a nonrotating coordinate system in which the direction of the fixed stars is always the
same.

• In particular, our choosing the negative z axis to pass through the center of the moon,
while convenient for doing the mathematics in Sec. 4, could give rise to confusion, since it
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suggests we might be using a rotating coordinate system, with all the complications arising
from the corresponding fictitious forces or accelerations; see TM Ch. 10. Instead, think of
the x, y, z system as having a fixed orientation, and wait for the exact instant in time at
which the moon is along the −z axis. At that moment the tidal forces computed in Sec. 4
are demonstrably correct.

6 The Roche Limit

⋆ If a satellite held together by its own gravity gets too close to a massive gravitating
body (e.g., Jupiter) it can be pulled apart by tidal forces. The general idea can be understood
in the following way. Let the massive body have radius R and mass M , and assume the
satellite is a sphere of radius r and mass m. If the satellite is at a distance D from the center
of the massive body it will be subject to tidal accelerations, of which the most severe occur
at the point on its surface closest to the massive body, and the one that is furthest away,
with magnitude, see (5) and (6), 2br = 2GMr/D3 and a direction opposite to the satellite’s
own gravitational acceleration at its surface, which is Gm/r2. Equating the two magnitudes
gives

m/r3 = 2M/D3. (15)

Under this condition a rock at the corresponding point on the surface of the satellite is no
longer held down by the satellite’s gravity, and if thrown upwards will keep moving.

• Let the average density of material in the massive body and in the satellite be ρM =
(3/4π)M/R3 and ρm = (3/4π)m/r3, respectively. Then we can rewrite (15) as

D/R = 21/3(ρM/ρm)1/3, (16)

and interpret it to mean that a satellite that gets closer than D to the massive body will
tend to be broken up by the tidal forces. This limiting distance is known as the Roche limit,
named for the French mathematician Edouard Roche who studied it in 1848.

◦ Note that the Roche limit applies only to satellites held together primarily by gravita-
tional forces. The satellites launched by NASA are held together by chemistry, not gravity,
and tidal forces are no worry.

• The factor of 21/3 in (16) depends on our assumption that the satellite is a sphere.
But one would hardly expect a satellite that is about to break apart from tidal forces to
retain a spherical shape. Thus the actual limit depends on more than the average density
of material. If the satellite consists of an incompressible fluid, so is easily squeezed out of
shape, the experts tell us that one should replace 21/3 = 1.26 in (16) with 2.44.

◦ Tidal forces will tend to distort a squishy satellite into a prolate spheroid with its major
axis in the direction pointing towards the massive body. But making the satellite longer in
this direction will render the tidal forces that are trying to pull it apart even more effective,
since they increase with distance from the center of the satellite. Thus we can understand
qualitatively why 2.44 is greater than 1.26.
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