a) The Hamiltonian is the sum of the kinetic plus potential energy, thus
\[H = \frac{p^2}{2m} + mgy. \]
Hamilton’s equations are
\[\dot{y} = \frac{\partial H}{\partial p} = \frac{p}{m}; \quad \dot{p} = -\frac{\partial H}{\partial y} = -mg. \]
Differentiating the first and using the second gives us the expected
\[\ddot{y} = \frac{\dot{p}}{m} = -g. \]

b) Alternative solutions to this part:
(i) \(H \) is constant along such a trajectory, and solving \(H = \frac{p^2}{2m} + mgy \) for \(y \),
\[y = \frac{H}{mg} - \frac{p^2}{2gm^2} = \text{constant} - \frac{p^2}{2gm^2}, \]
with different \(H \) values or different constants defining different trajectories.
(ii) Integrating \(dy/dp = \dot{y}/\dot{p} = -p/gm^2 \) gives \(y = \text{constant} - \frac{p^2}{2gm^2} \).
(iii) Along a trajectory \(p = p_0 - mgt \), so \(t = (p_0 - p)/mg \). Inserting this in \(y = y_0 + (p_0/m)t - \frac{1}{2}gt^2 \) (note: \(\dot{y} = p/m = p_0/m \) at \(t = 0 \)) yields, after a little algebra, \(y = \text{constant} - \frac{p^2}{2gm^2} \).

c) The fact that \(\dot{p} = -mg \) is independent of \(y \) means that the horizontal line \(p = p_1 \) at \(t = 0 \) will at time \(t = \tau > 0 \) be shifted to a horizontal line \(p = p'_1 = p_1 - mg\tau \); similarly the \(p_2 \) line shifts to \(p'_2 = p_2 - mg\tau \), so \(\Delta p = p_2 - p_1 = p'_2 - p'_1 \) remains the same. Thus the region \(R \) gets mapped to a region \(R' \) of the same vertical height \(\Delta p \). The difference \(\Delta y \) in \(y \) values between the two trajectories at a fixed \(p \) is the difference of two constants, see (b). Therefore the area of \(R \), \(\Delta y \cdot \Delta p \), is the same as the area of \(R' \). This is what one would expect from Liouville’s theorem, which states that phase-space “volume” (in this case the “volume” is the area) of some region does not change with time as the points in the region evolve to a later time.
a) Draw a line at constant E, total energy, on the $V(r)$ diagram, see sketch. This intersects the $V(r)$ curve at the minimum and maximum values r_1 and r_2 of r, so if r_2 is given, this construction determines r_1. The reason it works is that when $r = r_1$ or r_2, the radial part of the kinetic energy, $\frac{1}{2}\mu \dot{r}^2$, is 0, because $\dot{r} = 0$: the orbit is at an extreme value of r. Thus $E = U + T = U + \frac{l^2}{2\mu r^2} = V(r)$ for these values of r. This construction clearly uses conservation of energy E, which must be the same at both r_1 and r_2, and conservation of angular momentum l, as this value of l determines the $V(r)$ curve.

b) Since $l = \mu r^2 \dot{\theta}$ is constant (conservation of angular momentum), we know that $\dot{\theta} = l/\mu r^2$, whence it follows that

$$\frac{\dot{\theta}_1}{\dot{\theta}_2} = \frac{r_2^2}{r_1^2} = \frac{1}{\lambda^2}.$$

To find T_1/T_2, use the fact that at both r_1 and r_2 the \dot{r} contribution to the kinetic energy vanishes, so $T = 0 + \frac{1}{2}\mu r^2 \dot{\theta}^2$, and

$$\frac{T_1}{T_2} = \frac{r_1^2 \dot{\theta}_1^2}{r_2^2 \dot{\theta}_2^2} = \frac{\lambda^2}{\lambda^4} = \frac{1}{\lambda^2}.$$