
13    Mechanical  Waves  Fall 2003 
 
 
A wave is a disturbance from an equilibrium state that moves or propagates from one 
region of space to another.  Wave phenomena are found in all areas of physics.  The wave 
concept plays a central and overwhelmingly important role in all of physical theory and is 
a key unifying element in the most diverse branches of physics. 
 
Familiar examples include waves on the surface of a liquid, sound waves (a periodic 
disturbance from a state of uniform pressure), and electromagnetic waves (the passage of 
time-varying electromagnetic field patterns through otherwise empty space).  Mechanical 
waves always are associated with a wave medium, such as air, a solid material, or a liquid 
surface.  In a longitudinal wave, the molecules of the medium move back and forth 
parallel to the direction of the travel of the wave during wave propagation.  In a 
transverse wave, they are displaced along a line perpendicular to the wave's direction of 
travel.   
 
In air, sound waves are longitudinal; in solids and liquids they can be either longitudinal 
or transverse.  Electromagnetic waves have no mechanical medium, but in regions far 
from the source the electric and magnetic fields are perpendicular to the direction of 
propagation.  Thus electromagnetic waves are classified as transverse. 
 
 
Waves on a Stretched Rope  
 
One of the simplest kinds of mechanical wave to visualize and analyze is wave motion on 
a stretched rope or string.  We'll use this system to illustrate several of the most important 
features of wave propagation.  Suppose we tie one end of a long rope to a stationary 
point, stretch the rope out horizontally (neglecting any sag due to gravity), and then give 
the end we are holding a back-and-forth transverse motion.  The result is a wave pulse 
that travels along the length of the rope.  Observation shows that the pulse travels with a 
definite speed, maintaining its shape as it travels, and that the individual particles making 
up the rope move back and forth in a direction perpendicular to the rope's equilibrium 
position, not parallel to it.  Thus the wave is transverse. 

 
To analyze waves on a stretched 
rope in detail, we'll use the 
coordinate system shown.  The 
equilibrium position is along the  
x-axis, and the transverse 
displacement of any point away 
from this position is  y.  Thus  y  is 
a function of both  x  (the 
undisplaced position of the point) 

and  time  t;   y = f(x, t).  This is called the wave function;  if we know the wave function 
for a particular wave motion, we know everything there is to know about the motion of 
the system.  We'll explore this remark in detail later. 
 



  13    Mechanical Waves  13-2

Example:  Suppose a transverse wave pulse on a rope is described at time  t = 0  by the 
equation 

 y
x

=
+
1

1 2 ,       where  x  and  y  are both measured in meters. 

 
The crest of the pulse (the 
maximum value of  y)  is at  x = 
0.  Suppose the pulse moves in 
the +x direction (i.e., the 
direction of increasing  x)  with a 
constant speed  of  2 m/s.  Then 
at the later time  t = 1 s, the crest 

of the pulse has moved to  x = 2 m, and the corresponding function is  
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At time    = 2 s,     
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,     and so on.   
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Generalizing, we see that if the speed of propagation of the wave is denoted by  c, then at 
any time  t  the shape of the wave pulse is given by 

 y
x ct

=
+ −

1
1 2( )

.  That is, in time  t  the pulse has traveled a distance  ct.  If you 

run alongside the rope with speed  c,  the quantity  (x − ct)  at your moving location is 
constant, and your speed is the same as that of the wave pulse 
 
More generally,  any  function  of  x  and  t  that contains the variables  x  and  t  only in 
the combination  (x − ct)  represents a wave traveling in the direction of increasing  x  
with wave speed  c.  Two simple examples (the first a pulse, the second a sinusoidal 
wave) are   

 e k x ctk x ct− − −( ) cos ( ).
2

and   (1) 

A pulse may also originate at some point to the right of  the origin and travel in the 
direction of decreasing  x.  In that case we replace the  quantity  (x − ct)  in all the above 
expressions by  (x + ct).  Any function containing  x  and  t  only in this specific 
combination represents a wave traveling in the  −x  direction with speed  c. 
 
We can show that any function  y = f(x, t)  that contains  x  and  t  only in the 
combination (x − ct)  or  (x + ct), or any linear combination of such functions,  must 
satisfy the partial differential equation 
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Thus any wave function for a wave traveling in either the  +x  or  −x  direction, or any 
linear combination of such functions, must satisfy this equation, one of several forms of 
the wave equation.  Proof of this statement is left as a problem.   
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Periodic Waves 
 
A particularly important class of waves is one in which each particle of the medium 
undergoes a periodic motion with period  T  (the time for one cycle) and frequency   
f  = 1/T  (the number of cycles per unit time).  In this case the pattern of the wave motion 
on the rope is also spatially periodic.  During one period, the wave travels a distance  cT,  
so the displacement of the rope consists of a series of identical patterns, each with length  
cT.  This length is called the wavelength of the wave, denoted by  λ.  During a time equal 
to  T,  the wave travels a distance  λ.  Thus we have the relations 

 λ λ= = =cT
c
f

c for .   (3) 

Of particular interest are sinusoidal waves, in which the position of each particle varies 
sinusoidally with time, i.e., with simple harmonic motion.  Then at each value of  x,  the 
displacement  y  of a point on the string is a sinusoidal function of time.  And at any time  
t,  if we take a picture of the instantaneous shape of the string, we find that   y  varies  
sinusoidally with  x.   
 
Here's a way to devise a wave function for a sinusoidal wave.  We give the end of the 
rope (at x = 0) a sinusoidal motion  y = A cos ωt,  where as usual  ω = 2π f   is the angular 
frequency of the motion and  A  is its amplitude.  Then every other point on the rope also 
moves with sinusoidal motion, with the same frequency and period but with a phase lag 
that is proportional to the distance  x  from the end.  That is, at point  x,  

 y A t= −cos( )ω ϕ .  (4) 

If  x  is exactly one wavelength  (x = λ),  the phase lag  ϕ  is exactly  ϕ = 2π   (i.e., one 
cycle).  If  x = λ/2,  ϕ = π ,  and so on.  In general, at any point  x  the phase lag is  
ϕ  = 2π x /λ ,  and the general wave function is 

 y x t A t
x

, cosb g = −F
HG

I
KJω π

λ
2 .  (5) 

Using the identity  cos (α) = cos (−α)  and the relations  ω = 2π f  = 2π /T,  we can 
reverse the order of terms and write this in the more customary forms  

 y x t A
x
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x t
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The second form shows explicitly that when  x  increases by one wavelength  (λ)  the 
cosine function goes through one period  (2π),  and that when  t  increases by one period  
(T)  the cosine function again goes through one period. 
 
It is often convenient to express some of the above relations in terms of a quantity  k  
called the wave number or the propagation constant,  defined as   

 k = 2π
λ

.      (7) 

Using this notation, we can rewrite Eq. (3)  as 
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We can also re-express Eq. (6)  in any of the following forms: 
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Each of these forms can be expressed as a function of the quantity  u = x − ct.  Proof of 
these statements is left as a problem.  Similar expressions can be written for sinusoidal 
waves traveling in the  −x  direction;  all the  −’s  in Eqs. (6) and  (9) become  +’s. 
 
The wave function  y(x, t)  gives the transverse displacement  (y)  at any time  t  of a point  
x.  The transverse velocity  vy  of the point  is the time rate of change  of  y  with respect 
to  t.  Because  y  is also a function of  x,  we write this relationship using a partial 
derivative: 

 v
y
ty = ∂

∂
.   (10) 

Also, the slope  M  of the rope at any point is the partial derivative of  y  with respect to x: 

 M
y
x

= ∂
∂

.   (11) 

Example:  Suppose the wave function is  y(x, t) = A cos(kx − ωt).  The transverse speed  
vy  of a point on the rope is given by 

 v
y
t

A kx ty = ∂
∂

= −ω ωsin( ).  

For example, at the point  x = 0,   

 y A t A t v A t A ty= − = = − = −cos( ) cos sin( ) sin( )ω ω ω ω ω ωb g        and                  

At time  t = 0,  the point has displacement  A  and is instantaneously at rest.  At a slightly 
later time,  y  is a little less than  A, and the velocity has become slightly negative (as the 
point moves downward toward its equilibrium position). 
 
 
Speed of Waves on a Rope  
 
The speed of wave propagation on a stretched rope is determined by its mechanical 
properties; these are the tension  F  and the mass per unit length  µ  (also called the linear 
mass density).  It turns out that the wave speed  c  is given by 

 c
F= µ .    (12)   

We'll derive this relationship, but first we note that it is intuitively reasonable.  Intuition 
suggests that waves should travel more slowly on a more massive rope than on a lighter 
one, and that greater tension should lead to a greater wave speed.   
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To derive Eq. (12), we apply Newton’s 
second law to a short segment of string 
that in the equilibrium position would 
have length  ∆x.  (The length in any 
displaced position is somewhat greater, 
as shown in the diagram, where 
vertical displacements are greatly 
exaggerated.)  The mass of this 
segment is  µ∆x . 
 
 

The forces acting at the two ends are shown.  Because the motion is assumed to be 
transverse to the direction of propagation, the segment has no component of acceleration 
in the  x  direction, so the total horizontal force acting on it must be zero.  The magnitude 
of the  x component of force on each direction is just equal to the tension  F. 
 
To find the  y  components of force at the two ends, we note that at each end the ratio of 
vertical to horizontal components is equal (apart from sign) to the slope of the rope at 
each point.  Taking signs into account, we have 
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Now we apply Newton's second law; equating the net  y  component of force to the mass  
µ∆x   of the segment times its transverse acceleration: 

 F F F
y
x x x

y
x x

x
y

ty y2 1

2

2+ = ∂
∂

F
HG

I
KJ +

− ∂
∂

F
HG

I
KJ

L
NM

O
QP = ∂

∂∆
∆µb g . (14) 

Finally, we divide both sides by  ∆x  and take the limit as  ∆x  → 0.  In this limit the left 
side becomes the second derivative of  y  with respect to  x,  and the final result is 
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We conclude that the wave function  y(x, t)  for any wave motion that is consistent with 
Newton’s second law must satisfy Eq. (15).  But we have also seen previously that the 
wave function must satisfy Eq. (2).  Comparing Eqs. (2) and (15), we see that both 
equations can be satisfied at once only if   

 
1
2c F

c
F= =µ
µ

or , (16) 

as we asserted with Eq. (12).  Thus Eq.(16) shows how the speed  c  of the wave is 
determined by the mechanical properties  µ  and  F  of the rope. 
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Here's a useful by-product of this derivation   At any point  x  on the rope, the portion to 
the right of the point exerts, on the portion to the left, a longitudinal component of force  
with magnitude  F  (the tension) and a transverse (y component) of force  Fy  given by  

 F F
y
xy = ∂

∂
.   (17) 

Simultaneously, the portion on the left exerts a transverse force on the portion to the 
right, given by the negative of this expression (according to Newton’s third law). 
 
Reflection,  Superposition,  and Standing Waves 
 
Suppose a wave pulse is initiated at the positive-x  end of a stretched rope and travels in 
the  −x  direction toward  x = 0.  We'll call this the incident pulse.  Now suppose the point  
x = 0  is held stationary by a clamp, so that for any time t,  y(0, t) = 0.  What happens? 
 
Observation shows that a second wave pulse, inverted compared to the incident pulse, 
originates at  x = 0  and travels in the  +x  direction.  We'll call this the reflected pulse.  
As the incident pulse arrives at  x = 0,  it exerts a varying force on the clamp at the 
stationary point.  By Newton's third law, that point exerts at each instant an equal and 
opposite force on the rope.  This reaction force generates the reflected pulse. 
 
If  y1  is the wave function for the incident pulse and  y2  is the wave function for the 
reflected pulse, then each of these functions separately satisfies the wave equation, Eq. 
(15).  Because that equation is a linear equation, any linear combination of solutions is 
also a solution.  This is the principle of linear superposition.  The individual wave 
functions,  y1  and  y2,  aren't necessarily zero at all times at the stationary point  x = 0,  
but their sum must be zero at  x = 0  at all times.  This kind of condition is called a 
boundary condition. 
 
Now suppose the incoming wave is a sinusoidal wave rather than a wave pulse.  
Specifically, let's assume that the incident sinusoidal wave has the wave function  

 y A k x t1 = +cos ωb g .  (18) 

We assert that in order to satisfy the boundary condition at  x = 0  at all times, the wave 
function  y2  for the reflected wave must be 

 y A k x t2 = − −cos ωb g   (19) 

The first  (−)  shows that the reflected wave is inverted with respect to the incident wave. 
The total wave function for the system, the sum of incident and reflected waves, is 

 y y y A kx t A k x t= + = + − −1 2 cos cosω ωb g b g . (20) 

At the stationary point  x = 0,  this becomes 

 y t A t A t( , ) cos( ) cos( )0 0= − − =ω ω . 

This is zero because for any  α,  cos α = cos (−α).  Thus we confirm that the total wave 
function, Eq. (20), does satisfy the boundary condition that  y(0, t) = 0  for all  t. 
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We can gain further insight by expanding the cosine functions in Eq. (20)  using the 
identities 

 cos cos cos sin sinα β α β α β± =b g m .  (21) 

We leave the details of this calculation as an exercise; the result is 

 y y y A k x t A k x t= + = − = −1 2 2 2sin sin sin sin .ω ωb g  (22) 

This expression does not contain the variables  x  and  t  in the combination  x − ct  or   
x + ct,  and it doesn't represent a wave traveling in one direction or the other.  Instead,  
the displacement of every particle is proportional to  sin ωt ,  so the particles all move in 
phase  (or 1/2 cycle out of phase)  with angular frequency  ω.  The amplitude of motion 
of each particle is (apart from sign)  2A sin kx .  Thus the appearance is that of a 
sinusoidal shape that doesn't move along the length of the string but grows larger and 
smaller with time.  Such a wave is called a standing wave. 
 
Some particles never move at all.  At points where  kx  is an integer multiple of π , that is   

 k x n n= =π 1 2 3, , , Lb g , 

sin kx = 0.  Such points are called node points or nodes.  They are located at values of  x 
such that  

 x n
k

n= =π λ
2

.  (23) 

The node points are equally spaced, a 
half-wavelength apart, along the 
length of the rope.  The point  x = 0  
is of course a node point. 
 
Midway between each two adjacent 
nodes are points of maximum 
displacement, with amplitude 2A.  
These points, called antinodes, are 
located at values of  x  given by 

 kx n x n
k

n= + = + = +1
2

1
2

1
2 2

b g b g b gπ π λ
or  (24) 

Like the nodes, the antinodes are spaced one-half wavelength apart. 
 
Now suppose the rope has finite length  L  and that both ends are held stationary.  Then 
the points  x = 0  and  x = L  must both be nodes.  Because the nodes must be spaced a 
half-wavelength apart, this condition can be satisfied only if   L  is an integer number of 
half-wavelengths.  That is, a standing wave on a rope of length  L,  with both ends held, is 
possible only for certain wavelengths and therefore only for certain frequencies.  The 
possib le wavelengths, which we denote by  λn,  are given by  

 L n n
k

L
n

nn
n= = = =λ π λ

2
2

1 2 3or ( , , , ).L  (25) 
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The corresponding permitted frequencies and angular frequencies, from  c = λf,  are 

 f n
c
L

f n
c

L
nn n n= = = =

2
2 1 2 3, , , ,ω π π

Lb g , (26) 

This result shows that the lowest-frequency 
standing wave has frequency  c/2L  and 
that all the others are integer multiples of 
this value.  The possible frequencies are 
said to form a harmonic series,  

 f
c
L

f
c
L

f
c
L1 2 32

2
2

3
2

= = =, , , .L  (27)   

Τhe smallest or fundamental frequency  is  f1;  all the others are overtones or harmonics. 
The fundamental frequency can also be expressed in terms of the mechanical properties 
of the rope, using Eq. (12).  We invite you to show that 

 f
L

F
1

1
2

=
µ

.    (28) 

This relation is the main determinant of the pitch of stringed musical instruments. 
 
Recalling the definition of a normal mode of a vibrating system, we see that each value of  
f  and the corresponding vibration pattern constitute a normal mode for this system.  All 
particles vibrate sinusoidally with the same frequency, and there is a definite vibration 
pattern relating the motions of the various points.  But, unlike systems containing a few 
springs and masses (and only a few normal modes), this system has an infinite number of 
normal modes, one for each value of the integer index  n.  For each mode,  n  is the 
number of antinodes, and  (n + 1)  is the number of nodes (including the end points). 

From Eq. (24), the wave number  kn  for mode  n  is              k
n
Ln = π

 (29) 

Finally, we can construct a wave function  yn  for normal mode  n.  We begin with Eq. 
(22), with one change.  In Eq. (22),  A  was the amplitude of each individual traveling 
wave.  It is usually more convenient to make  A  in Eq. (22) the amplitude of the standing 
wave.  We simply replace  (−2A)  by  A  and make the appropriate substitutions for  k  
and  ω,  from Eqs. (26) and (29).  The final result is 

 y A n
L

x n
c

L
tn = F

HG
I
KJ

F
HG

I
KJsin sin

π π
.  (30) 
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The conditions  y(0, t)  and  y(L, t)  
(i.e., that the ends of the string at  x = 0  
and  x = L  never move)  are called 
boundary conditions for the system.  
Other, different boundary conditions 
are also possible.  Suppose instead of 
tying the rope to a fixed point at  x = 0, 
we tie it to a ring that slides without 
friction on a rod oriented 
perpendicular to the x-axis.  In this 
case there is no transverse force on the 

end of the rope, and Eq. (17) requires that  ∂ ∂ =y x 0 at this point.  This end is then an 
antinode rather than a node.  An incoming wave is then reflected without inversion.  If 
the incoming wave is sinusoidal, the total wave function is   

 y x t A kx t A kx t( , ) cos cos .= + + −ω ωb g b g  (31) 

We can again use the cosine sum identity, Eq. (21),  and replace  (2A)  by  A  as before, to 
rewrite this as 

 y x t A t k x A kx t, cos cos cos cosb g b g= =ω ω . (32) 

If both ends of the rope are anchored to rings, as described above, then both ends are 
antinodes.  We invite you to prove that in this case the possible frequencies are given by 
Eq. (27) but with the positions of the nodes and antinodes interchanged compared to the 
figure on page 13-8.  Finally, what happens when one end is tied to a sliding ring and the 
other end is stationary?  The answer to this question is left as an exercise. 
 
Partial Reflection 
 
Suppose two pieces of rope with different linear mass densities  µ1  and  µ2  are tied 
together and stretched, so the tension  F  is the same in both.  Again let the equilibrium 
position be the  x-axis, neglect any sag due to gravity, and place the knot (assumed 
massless) at the point  x = 0.  Now suppose a sinusoidal wave originates in the left   
(x < 0)  side of the rope and travels in the  +x  direction.  What happens? 
 
Experiment shows that there is a reflected wave in the  x < 0  region, and also a 
transmitted wave that goes into the  x > 0  region.  We'll denote the total wave function in 
the  x < 0  region as  y− ,  and the wave function in the  x > 0  region as  y+ .  If we are 
given the amplitude and angular frequency of the incoming wave, can we determine these 
quantities for the reflected and transmitted waves? 
 
The first step is to identify the boundary conditions that must be satisfied at the knot (the 
point  x = 0).  First, the rope must be continuous at this point, so at  x = 0,  y− = y+ : 

 y t y t− +=( , ) ( , ).0 0   (33) 

Continuity of the rope also requires that the angular frequency of motion  ω  must be the 
same in the two sides; otherwise this condition couldn't be satisfied at all times. 
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Second, each section of rope exerts a transverse force at the knot, given by Eq. (17).  The 
total transverse force exerted on the knot by both ropes must, according to Newton's 
second law, equal its mass times its acceleration.  But we have assumed the knot is 
massless; therefore the total force must be zero.  Since the tension is the same on both 
sides, the slopes  at the point  x = 0  also must be the same.   
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∂
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KJ =

− +y
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x x0 0

.  (34) 

With all these considerations in mind, we try a solution in the form  

 y A k x t B k x t− = − + +cos( ) cos ( ).1 1ω ω  (35) 

 y C k x t+ = −cos ( ).2 ω  

In these equations,  A  is the amplitude of the incident wave,  B  the amplitude of the 
reflected wave, (both in the region  x < 0),  and  C  the amplitude of the transmitted wave.  
(in the region  x > 0).  The angular frequency  ω is the same in all functions, but the wave 
number  k  is different  (k1,  k2)  on the two sides because the linear mass densities   
(µ1,  µ2),  and therefore the wave speeds  (c1,  c2), are different in the two sections of rope. 
 
Considering the first boundary condition, we evaluate Eqs. (35) at  x = 0  and substitute 
the results into Eq. (33): 

 A t B t C tcos( ) cos( ) cos− + = −ω ω ωb g .        Or, since        cos(−α) = cos(α), 

 A B C+ = .   (36) 

For the second condition, we take the derivatives of Eqs. (35) indicated in Eq. (34) and 
evaluate the results at  x = 0: 

 − − − = − −k A t k B t k C t1 1 2sin( ) sin( ) sin( )ω ω ω .       Or, since      sin(−α)= − sin(α), 

 k A B k C1 2( ) .− =   (37) 

Now, assuming the amplitude  A  of the incident wave is known, we can solve Eqs. (36) 
and (37) simultaneously for  B  and  C.  We leave the details as a problem;  the results are 

 B
k k
k k

A C
k

k k
A= −

+
=

+
1 2

1 2

1

1 2

2
, .   (38) 

We note that if  k1 = k2, then  B  = 0  and  C  = 1.  Then there is no reflected wave, and the 
transmitted wave has the same amplitude as the incident wave, both reasonable results. 
 
We can re-write Eqs. (38) in terms of the wave speeds  c1  and  c2  in the two sections of 
rope, using the relations  ω = c1k 1  = c2k 2 .  Again we leave the details as an exercise; 
the results are  

 B
c c
c c

A C
c

c c
A= −

+
=

+
2 1

2 1

2

1 2

2
, .   (39) 
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Energy in Wave Motion 
 
Every wave motion has energy associated with it, and waves can convey energy from one 
region of space to another.  We'll explore these concepts in the context of waves on a 
stretched rope or string. 
 
Considering a small segment of rope with length (in its equilibrium position)  ∆x,  we see 
that the kinetic energy of the segment  is 

 K mv x
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The kinetic energy per unit length  ∆x  is 
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The segment also has potential energy because work is required to displace and deform it 
from its equilibrium state.  Suppose the segment is initially horizontal, at  y = y1,  and 

then the right end is displaced a distance  ∆y =
∂
∂

F
HG

I
KJ

y
x

x∆ .  After this displacement, the 

force acting at the right end has a transverse component  Fy  with  magnitude  F
y
x

∂
∂

.  

The average transverse component of force during the displacement is half of this: 
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.    The work  W  done  by  Fy  during the displacement is
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This is equal to the potential energy  V  of the segment  ∆x.  The potential energy per unit 
length  is 
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Finally, the total energy (kinetic plus potential) of the segment  ∆x  is 
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To find the total energy of the entire rope, we integrate Eq. (44) on  x  over the length of 
the rope.  For a rope with ends at  x = 0  and  x = L,  the total energy is 
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Wave motion on a rope can transfer energy from one region of the rope to another.  
Consider a point  Q  on the rope.  The portion of rope to the left (i.e., smaller  x) of  Q  
exerts a transverse force  Fy  on the portion to the right of  Q  (larger  x).  According to 
Eq. (17),  this force is given by  

 y F
y
x

= − ∂
∂

.   (46) 

As the point moves transversely, this force does work on the portion to the right of  Q.  
The power  P  (time rate of doing work) associated with this work is given by  

 P F v F
y
x

y
ty y= = − ∂

∂
∂
∂

.   (47) 

Thus there is a flow of energy in the  +x  direction with corresponding power (time rate of 
transfer of energy) given by Eq. (47). 
 
Example:  Derive an expression for the rate of energy flow past a given point in a rope 
when the wave function is  y A k x t= −cos ωb g . 
 
The derivatives in Eq. (47) are 

 
∂
∂

= − − ∂
∂

= −y
x

Ak k x t
y
t

A k x tsin , sinω ω ωb g b g . 

We substitute these into Eq. (47) and combine factors to obtain 

 P F Ak k x t A k x t= − − − −sin sinω ω ωb g b g     and 

 P F k A k x t= −ω ω2 2sin b g .  (48) 

Several aspects of Eq. (48) are noteworthy.  First, the expression is never negative; the 
flow of energy is always in the  +x  direction.  Second, the energy flow rate is 
proportional to the square of the amplitude  A.  Finally, because  k =   ω/c,  it is 
proportional also to the square of the angular frequency  ω. 
 
The factor  Fk ω  in Eq. (48)  can be transformed into a more generally useful form by use 
of the relations  ω = ck  and  c2 = F/µ,  which are Eqs. (8) and (12), respectively.  We get 

 F k c
c

c
Fω µ ω ω µ ω µ
µ

ω= F
HG

I
KJ = =2 2 2c h ,       and finally  

 P F A k x t= −µ ω ω2 2 2sin b g   (49) 

At any given point on the rope, the average value of  sin2(kx  - ωt)  over one cycle (or 
any integer number of cycles) is 1/2.  Thus the average rate of energy transmission is 

 P F Aave = 1
2

2 2µ ω .  (50) 

We note that  P  depends only on  ω,  A,  and the mechanical properties  µ  and  F  of the 
rope.  The quantity  µF   is called the characteristic impedance of the rope. 
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Complex Exponential Functions 

 
Calculations with sinusoidal functions can often be simplified by expressing them in 
terms of exponential functions with imaginary or complex arguments.  The relation of 
sinusoidal and exponential functions is explored in Section 12,  Eqs. (8) through (11).  
We quote here some results of that discussion. 
 
Any complex number or function  z  can be expressed in the form  z = x + iy,  where  x  
and  y  are real numbers or functions and  i = −1 .  The exponential function  ez   is 
given by 

 e e y i yz x= +cos sinb g .  (51) 

In particular, when  x = 0,  this becomes 

 e y i yi y = +cos sin .  (52) 

This  relation is called  Euler's  formula. 
 
The real part of a complex quantity  z  is often denoted by  Re[z],  and the imaginary part 
by  Im[z].  Thus Eq. (52) can be expressed as   Re[ ] cos , Im[ ] sin .e y e yi y i y= =  
 
Euler's formula shows that the wave function  y x t A kx t, cosb g b g= − ω   for a sinusoidal 
wave traveling in the  +x direction  can be expressed as the real part of the function  
Aei k x t−ωb g .  Similarly, the function  y x t A kx t, sinb g b g= − ω   is the imaginary part of  

Aei k x t−ωb g .  A sinusoidal wave traveling in the  −x  direction can be expressed as  

Ae i k x t− +ωb g .  (We include the  −  sign in the exponent so that all the exponential functions 
will have the same dependence on  t,  contained in the factor  e i t− ω .) 
 
Of course, the displacements of points on a rope are always real quantities, but we can 
describe them conveniently as the real parts of complex functions. 
 
Example:  Consider again the problem of reflection of a sinusoidal wave at a boundary 
(at the point  x = 0)  between two sections of rope with different linear mass densities, as 
discussed on pages  9 and 10.  Let the wave functions on the two sides of the junction be 

 y A e B e y Cei k x t i k x t i k x t
−

− − +
+

−= + =1 1 2ω ω ωb g b g b g,  (53) 

The boundary conditions at  x = 0  are given by Eqs. (33) and (34).  We note that taking 
the derivatives of these functions with respect to  x  amounts to simply multiplying each 
by a factor  (ik)  or  (−ik).  Applying these boundary conditions, we again obtain Eqs. (36) 
and (37): 

 A B C k A k b k C+ = − =and 1 1 2 .  
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Beats, Dispersion, and Group Velocity 
 
When two or more sinusoidal functions having different frequencies are superimposed, 
interesting new features appear.  To introduce the topic, we consider a stretched rope with 
an end at the point  x = 0.  We give this point a transverse motion that is a superposition 
of two sinusoidal motions with equal amplitudes but slightly different frequencies  ω1  
and  ω2, as described by the expression   

 y t A t A t0 1 2, cos cosb g b g b g= +ω ω   (54) 

This expression is more interesting when we rewrite it in terms of the average  ωo  of the 
two frequencies, and the amount  ∆ω  by which each differs from the average.  That is, 

 ω ω ω ω ω ω1 2= + = −o o∆ ∆, .  (55) 

(We've assumed that  ω1 > ω2.)   Now we substitute these expressions back into Eqs. (54)  
and expand each of the cosine functions using the cosine-sum identities.  Two of the four 
terms subtract out, the other two add, and the final result is 

 y t A t t0 2, cos cosb g b g b g= ∆ω ωo   (56) 

Assuming  ∆ω  is much smaller than  ωo,  we can think of Eq. (56)  as representing a 
sinusoidal motion with angular frequency  ωo  and an amplitude (the quantity in square 
brackets) that is not constant but that varies slowly with time (with angular frequency  
∆ω)  between zero and  ±2A.  Here is a graph of Eq. (56)   (displacement as a function of 
time) for the case  ∆ω = ωo 10. 

The figure shows that the two sinusoidal functions start out in phase at time  t = 0, and 
the total amplitude is  2A.  As time goes on, one function oscillates with slightly greater 
frequency than the other, and the phase difference increases successively.  When the 
phase difference reaches 1/2 cycle, there is complete cancellation.  After another equal 
time interval, they are back in phase and the amplitude is again  2A. 
 
The solid curves in the figure correspond to the factor in square brackets in Eq. (56), and 
its negative;  they constitute the envelope of the rapidly oscillating curve. 
 
If the two sinusoidal functions in Eq. (54) are two sound waves, perhaps produced by two 
slightly out-of-tune organ pipes, the listener hears a tone with angular frequency  ωo  that 
grows louder and softer, or beats, with angular frequency  2∆ω = ω1 − ω2, called the  beat 
frequency.  The factor of  2  results from the fact that the amplitude reaches maximum 
magnitude twice for each cycle of the function  cos(∆ωt);  the ear hears only the 
magnitude  of the amplitude variation.  Thus the beat frequency is  ω1 − ω2.  Listening for 
beats (or their absence) is the principal means of tuning pipe organs and many other 
musical instruments. 
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Now let's consider a wave on a rope that is produced by giving the end at  x = 0  the 
motion described by Eq. (54).  We’ll assume for now that the wave speed  c  is the same 
for all frequencies;  later we’ll explore what happens when the speeds of the two waves 
are different.  The first term in Eq. (54)  produces a sinusoidal wave given by 

 y A k x t k c1 1 1 1 1= − =cos ,ω ωb g           where . (57) 

The wave function for the second term in Eq. (54) is obtained similarly, and the total 
wave function (from the principle of linear superposition) is 

 y A k x t A k x t= − + −cos cos1 1 2 2ω ωb g b g  (58) 

As in Eq. (55), we introduce the quantities  ko  and  ∆k,  defined by the equations 

 k k k k k k1 o 2 oand= + = −∆ ∆ . (59) 

We substitute these expressions into Eq. (58), re-group the terms, and expand the cosine 
functions using the cosine-sum identities: 

    y A k k x t A k k x t= + − + + − − −cos coso o o o∆ ∆ ∆ ∆b g b g b g b gω ω ω ω  

  = − + − + − − −A k x t k x t A k x t kx tcos coso o o oω ω ω ωb g b g b g b g∆ ∆ ∆ ∆  

  = − − − − −A k x t k x t A k x t k x tcos cos sin sino o o oω ω ω ωb g b g b g b g∆ ∆ ∆ ∆  

       + − − + − −A k x t k x t A k x t k x tcos cos sin sino o o oω ω ω ωb g b g b g b g∆ ∆ ∆ ∆ , 
and finally 

 y A k x t k x t= − −2 cos cos∆ ∆ω ωb g b go o . (60) 

This result has the same form as Eq. (56), a rapidly varying wave motion characterized 
by the constants  ko  and  ωo, with an amplitude that varies more slowly in both space and 
time, as characterized by the constants  ∆k  and  ∆ω. 
 
At time  t = 0  the appearance of this wave looks just like the graph of  y  as a function of 
time  (on page 13-14),  but now we are plotting a graph of  y  as a function of  x,  i.e., the 
shape of the string, at time  t = 0. If the speed of propagation  c  is the same for both 
waves in Eq. (58),  the entire pattern represented by Eq. (60)  moves in the  +x  direction 
with constant speed  c.  One might well imagine it as resembling a string of short, fat 
sausage links moving along the  x axis with constant speed  c.  
 
It is worth noting that superposing the two sinusoidal waves has the effect of 
concentrating the wave disturbance in certain regions along the rope (the sausages), and 
decreasing it in other regions (the pinched places between the sausages).  We could create 
an even more localized disturbance by adding two more sinusoidal waves to cancel out 
alternate sausages in the string.  We can even superpose an infinite set of sinusoidal 
waves, centered around some angular frequency  ωo  and wave number  ko, using a 
formulation known as a Fourier integral.   
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Thus by superposing many 
sinusoidal waves  we can construct 
a wave that is in a sense localized 
in space (in contrast to the 
individual sinusoidal waves, 
which have no end).  Such a wave 
is called a wave packet or a wave 
pulse.  This construction is of 
central importance in quantum 
mechanics; it helps us to 
understand how what we call a 
particle can have both particle and 
wave properties at the same time. 

 
Now we return to the question of what happens if the wave speed  c  is different for 
different frequencies.  It's a little hard to imagine this for waves on a rope, but it is a 
familiar phenomenon for light and other electromagnetic radiation.  The refractive index 
of a transparent material such as glass is the ratio of the speed of light in vacuum to the 
speed in the material.  This varies with frequency; for glass it is greater for violet light 
than for (lower-frequency) red light.  In this case  c  (= ω/k )   decreases with increasing 
frequency.  This phenomenon is called dispersion   The angular frequency  ω  is no 
longer proportional to  the wave number  k,  but increases more slowly than  k. 
 
In Eq. (60), the speed of propagation of the rapid sinusoidal oscillations is   

 c
ko

o

o

= ω
,    (61) 

while the speed of propagation of the envelope curve is   

 c
kenv =

∆
∆

ω
.    (62) 

In the case of glass, discussed above, where  ω  increases less than proportionately with  
k,  cenv < co.  The envelope curves travel at constant speed  cenv,  while the rapidly-varying 
oscillations inside the envelope move with a greater speed  co,  appearing at the left side 
of the envelope and moving out the right side.  This is hard to describe, but a simple 
Maple demonstration helps to clarify it. 
 
The speed  cenv  of the envelope (and thus of a wave pulse such as was described above)  
is called the group velocity, and the speed  co  of the central-frequency sinusoidal wave is 
called the phase velocity.  This distinction is crucial in many areas of physics.  A 
sinusoidal wave, having no beginning or end, can’t convey information from one point to 
another; the maximum speed of transmission of information is the group velocity.  There 
are situations where the phase velocity of a wave is greater than the speed of light in 
vacuum.  This might seem to violate a basic principle of relativity, but in all such cases 
the group velocity is less than the speed of light, and so there is no violation.  Finally, we 
note that if there is no dispersion, then the phase and group velocities are equal. 
 

 


