13 Mechanical Waves Fall 2003

A wave is adisturbance from an equilibrium state that moves or propagates from one
region of space to another. Wave phenomena are found in dl areas of physics. The wave
concept plays a centra and overwhemingly important rolein al of physica theory and is
akey unifying e ement in the most diverse branches of physcs.

Familiar examples include waves on the surface of aliquid, sound waves (a periodic
disturbance from a gate of uniform pressure), and e ectromagnetic waves (the passage of
time-varying eectromagnetic fid patterns through otherwise empty space). Mechanica
waves aways are associated with awave medium, such asair, asolid materid, or aliquid
aurface. Inalongitudinal wave, the molecules of the medium move back and forth
paralle to the direction of the travel of the wave during wave propagation. Ina
transver se wave, they are displaced dong aline perpendicular to the wave's direction of
travel.

In ar, sound waves are longitudind; in solids and liquids they can be ether longitudina
or transverse. Electromagnetic waves have no mechanica medium, but in regions far
from the source the eectric and magnetic fields are perpendicular to the direction of
propagation. Thus eectromagnetic waves are classfied as transverse.

Waves on a Stretched Rope

One of the smplest kinds of mechanicd wave to visudize and andyze is wave motion on
adretched rope or gtring. Well use this sysem to illustrate severd of the most important
features of wave propagation. Suppose we tie one end of along rope to a Sationary
point, stretch the rope out horizontaly (neglecting any sag due to gravity), and then give
the end we are holding a back-and-forth transverse motion. The result isawave pulse
that travels dong the length of the rope. Observation shows that the pulse travelswith a
definite speed, maintaining its shape asiit travels, and that the individual particles making
up the rope move back and forth in adirection perpendicular to the rope's equilibrium
pogition, not pardld toit. Thusthe waveistransverse.

y To analyze waves on a stretched
! ropein detail, well use the
coordinate system shown. The
equilibrium pogtion isaong the
x-axis, and the transverse
displacement of any point away
fromthispogtionis y. Thus y is
afunction of both x (the
undisplaced position of the point)
ad time t; y=1(x,t). Thisiscdled the wave function; if we know the wave function
for aparticular wave mation, we know everything there is to know about the motion of

the sysem. Well explore thisremark in detail later.
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Example: Suppose atransverse wave pulse on aropeisdescribed at time t =0 by the
equation
1

y= ., Where x and y are both measured in meters.

1+ x?

The crest of the pulse (the
maximum vaueof y) isa x =
0. Supposethe pulse movesin
the +x direction (i.e, the
direction of increasing x) witha
x consgtant speed of 2m/s. Then
athelatertime t = 1 s, the crest
of the pulse has moved to x =2 m, and the corresponding function is
1 . 1
= : Attime t=2s y= , andsoon.
1+ (x- 2m)? 1+ (x- 4m)’
Generdizing, we seethat if the gpeed of propagation of the wave is denoted by c, then a
any time t the shape of the wave pulseis given by

= ; That is, intime t the pulse hastraveled adistance ct. If you

Y= 1+ (x- ct)?
run dongsde the rope with speed ¢, the quantity (X - ct) a your moving location is
constant, and your speed isthe same as that of the wave pulse

y

More gengdly, any function of x and t tha containsthevariables x and t onlyin
the combination (X - ct) represents awave traveling in the direction of increasing x
with wave speed c¢. Two smple examples (the first a pulse, the second a sinusoida
wave) are

- k(x-ct)?

e and  cosk(x- ct). @

A pulse may dso originate at some point to the right of the origin and trave in the
direction of decreasing x. Inthat case wereplacethe quantity (x - ct) indl the above
expressonshy (x + ct). Any function containing x and t only in this specific
combination represents awave traveling in the - X direction with speed c.

We can show that any function y =f(x, t) that contains x and t only inthe
combination (x - ct) or (X + ct), or any linear combination of such functions, must
satidfy the partia differentia equation

LIPS 2

Thus any wave function for awave traveling in either the +x or - x direction, or any
linear combination of such functions, must satisfy this equation, one of severd forms of
the wave equation. Proof of this statement is left as a problem.
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Periodic Waves

A particularly important class of wavesis onein which each particle of the medium
undergoes a periodic motion with period T (the time for one cycle) and frequency
f = 1T (the number of cycles per unit time). In this case the pattern of the wave motion
on theropeisaso spatially periodic. During one period, the wave travels adistance cT,
s0 the displacement of the rope congists of a series of identical patterns, each with length
cT. Thislengthis cdled the wavel ength of the wave, denoted by | . During atime equd
to T, thewavetravelsadistance | . Thuswe have the rdaions

I:cT:f£ or c=1f. 3
Of particular interest are sinusoidal waves, in which the position of each particle varies
snusoiddly with time, i.e., with Smple harmonic mation. Then a eech vdue of X, the
displacement y of apoint on the string isasnusoidd function of time. And a any time
t, if wetake apicture of the instantaneous shape of the string, wefind that 'y varies
snusoiddly with Xx.

Hereés away to devise awave function for asinusoida wave. We give the end of the

rope (at x = 0) agnusoidd motion y = A coswt, whereasusud w = 2pf istheangular
frequency of the motionand A isitsamplitude. Then every other point on the rope aso
moves with snusoidal motion, with the same frequency and period but with a phase lag

that is proportiond to the distance x fromtheend. That is, a point X,

y = Acoswt - ). (4)

If x isexactly onewavdength (x =1), thephaselag j isexactly | =2p (i.e, one
cycde). If x=1/2, ] =p, andsoon. Ingenerd, a any point X thephaselagis
] =2px/l, andthegenerd wavefunctionis

y(x,t) = Acos(wt -2p Ii) (5)

Using theidentity cos(a) = cos(-a) andthereations w = 2pf = 2p/T, wecan
reverse the order of terms and write thisin the more customary forms

y(x,t) = Acos(Zpll - WtJ = Aco{Zp(ll - %ﬂ (6)

The second form shows explicitly thet when X incresses by onewavelength (1) the
cosine function goes through one period (2p), and that when t increases by one period
(T) the cosine function again goes through one period.

It is often convenient to express some of the above relaions in terms of a quantity k
cdled the wave number or the propagation constant, defined as

k:2|—p. 0

Using this notation, we can rewrite Eq. (3) as

»__¢
k w/2p’

or w = ck. (8)
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We can aso re-express Eq. (6) in any of the following forms.

ol ) (G o oS0

Each of these forms can be expressed as afunction of the quantity u=x - ct. Proof of
these datementsis eft asaproblem. Similar expressions can be written for snusoida
wavestraveing inthe - x direction; dl the -’s in Egs. (6) and (9) become +'s.

Thewave function y(x, t) givesthe transverse displacement (y) at any time t of apoint
X. Thetransverse velocity vy of the point isthetime rate of change of y with respect
to t. Because y isdsoafunction of x, wewrite thisrelationship usng a partial
derivative:

Ty

v, = —. 10

, = (10)
Also, thedope M of therope a any point isthe partia derivative of y with respect to x:

Moo= W (11)

qIx

Example: Suppose the wave functionis y(x, t) = A cos(kx - wt). The transverse speed
vy of apoint on the ropeis given by

v, = Ty _ Aw sin(kx - wt).

1t

For example, at the point x =0,

y = Acos(- wt) = Acos(wt) and v, = Awsin(- wt) = - Awsin(wt)
Attime t =0, the point hasdisplacement A and isindantaneoudy &t rest. At adightly
later time, y isalittlelessthan A, and the velocity has become dightly negetive (asthe
point moves downward toward its equilibrium pogtion).
Speed of Waves on a Rope
The speed of wave propagation on a stretched rope is determined by its mechanicd
properties, these arethetenson F and the mass per unit length m (dlso cdled the linear
mass density). It turns out that the wave speed ¢ isgiven by

_|F
c= = (12

Well derive this rdaionship, but first we note that it isintuitively reasonable. Intuition
suggests that waves should travel more dowly on amore massive rope than on a lighter
one, and that greater tension should lead to a greater wave speed.
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To derive EQ. (12), we apply Newton's
second law to a short segment of string
thet in the equilibrium position would
have length Dx. (Thelengthin any
displaced position is somewhat greater,
as shown in the diagram, where

vertica displacements are greatly
exaggerated.) The mass of this

segment is mDX.

Theforces acting at the two ends are shown. Because the motion is assumed to be
transverse to the direction of propagation, the segment has no component of acceleration
inthe x direction, so the totd horizontd force acting on it must be zero. The magnitude
of the x component of force on each direction is just equd to the tenson F.

Tofindthe y components of force at the two ends, we note that a each end the ratio of
vertica to horizontal componentsis equal (apart from sign) to the dope of the rope at
each point. Taking Signsinto account, we have

i:_(ﬂ) , i:[ﬂ) (13)
F x /) x F ix ) x + Dx

Now we apply Newton's second law; equating the net y component of force to the mass
nmDx of the segment times its transverse accel eration:

- ql(y (v | - Ty
Ry, +Fy = FK‘”X])H Dx (ﬂx)x} (mDx) el (14)

Findly, we divide both Sdesby Dx and tekethelimitas Dx ® 0. Inthislimit the left
Sde becomes the second derivative of y with respect to x, and thefind result is

Ty Ty Ty _ mTy
F = m—, or — = —— 15
x> 1t? x> F qt? (15)
We conclude that the wave function y(x, t) for any wave motion that is consstent with
Newton’s second law must satisfy Eq. (15). But we have aso seen previoudy that the
wave function must satisfy Eq. (2). Comparing Egs. (2) and (15), we see that both
equations can be satisfied at once only if
1 m F
- = — or c=_[—, 16
c F m (16)

as we asserted with Eq. (12). Thus Eq.(16) shows how the speed ¢ of thewaveis
determined by the mechanica properties m and F of the rope.



13-€ 13 Mechanica Waves

Here's a useful by-product of thisderivation At any point x on the rope, the portion to
the right of the point exerts, on the portion to the | eft, alongitudind component of force
with megnitude F (the tension) and a transverse (y component) of force Fy, given by
-y
F,=F o (17)
Simultaneoudy, the portion on the |eft exerts a transverse force on the portion to the
right, given by the negative of this expresson (according to Newton's third law).

Reflection, Superposition, and Standing Waves

Suppose awave pulseisinitiated at the positive-x end of a stretched rope and travelsin
the - x direction toward x =0. Well cal thistheincident pulse. Now suppose the point
x = 0 ishdd gationary by aclamp, so that for any timet, y(0, t) =0. What happens?

Observation shows that a second wave pulse, inverted compared to the incident pulse,
originatesat x =0 and travelsinthe +x direction. Well cdl thisthe reflected pulse.
Astheincident pulsearrivesat x =0, it exerts avarying force on the clamp at the
dationary point. By Newton's third law, that point exerts at each ingtant an equa and
opposite force on the rope. This reaction force generates the reflected pulse.

If y1 isthewave function for the incident pulseand y» isthe wave function for the
reflected pulse, then each of these functions separatdy satisfies the wave equation, Eq.
(15). Becausethat equation isalinear eguation, any linear combination of solutionsis
dso asolution. Thisisthe principle of linear superposition. Theindividud wave
functions, y; and y», aren't necessaily zero at dl times at the stationary point x = 0,
but their summust bezeroa x =0 at dl times. Thiskind of condition iscaled a
boundary condition.

Now suppose the incoming wave is a sinusoidal wave rather than awave pulse.
Specificdly, let's assume that the incident sinusoidal wave has the wave function
y; = Acos(kx + wt). (18)

We assert that in order to satisfy the boundary conditionat x =0 a dl times, the wave
function y» for the reflected wave must be

Y, = - Acos(kx - wt) (19)

Thefirg (-) showsthat the reflected waveisinverted with respect to the incident wave.
Thetotal wave function for the system, the sum of incident and reflected waves, is

y=y,+Y, = Acos(kx +wt) - Acos(kx - wt). (20)
At the dationary point x =0, this becomes
y(0,t) = Acog(wt) - Acos(-wt) =0.

Thisis zero becausefor any a, cosa = cos (- a). Thuswe confirm that the totd wave
function, Eq. (20), does satisfy the boundary condition that y(0, t) =0 for dl t.
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We can gain further ingght by expanding the cosine functionsin Eq. (20) using the
identities

cos(a + b) = cosa cosb Fsinasinb. (21)
We leave the details of this calculation as an exercise; the result is

y=y, +Yy, =-2Asinkxsinwt = (- 2Asinkx)sinwt. (22)

Thisexpresson does not contain the variables x and t inthe combination x - ct or
X + ct, and it doesn't represent awave traveling in one direction or the other. Insteed,
the displacement of every particleis proportiond to sn wt, o the particlesal movein
phase (or 1/2 cycle out of phase) with angular frequency w. The amplitude of motion
of each particleis (gpart from sign) 2A Snkx. Thusthe gppearanceisthat of a
snusoida shape that doesn't move dong the length of the string but grows larger and
gndler withtime. Such awaveiscdled a standing wave.

Some particlesnever move at dl. At pointswhere kx isaninteger multiple of p, that is
kx =np (n=1,23, - ),

ankx = 0. Such points are caled node points or nodes. They arelocated at values of x

such that

I
X=N—=n—. 23
> (23)

The node points are equaly spaced, a
haf-wavelength gpart, dong the
length of therope. Thepoint x =0
isof course anode point.

~|o

Antinodes

Midway between each two adjacent
nodes are points of maximum
displacement, with amplitude 2A.
These points, called antinodes, are
located at values of x given by

kx =(n+3)p or x:(n+%)% = (n+%)|5 (24)
Like the nodes, the antinodes are spaced one-haf wave ength gpart.

Now suppose the rope hasfinite length L and that both ends are held sationary. Then
thepoints x =0 and x =L must both be nodes. Because the nodes must be spaced a
half-wavelength apart, this condition can be satisfied only if L isan integer number of
hdf-wavedengths. That is, a tanding wave on arope of length L, with both endshdld, is
possible only for certain waveengths and therefore only for certain frequencies. The
possible wavelengths, which we denote by | , are given by

p 2L

I
L=n—=n-— or | = = n=12,3 --). 25
3= o ) (25)
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The corresponding permitted frequencies and angular frequencies, from c =1 f, are

C pc
f =n—, = 2pf = nt= =123 - ), 26
0 = Nor w, = 2pf, = n=- (n ) (26)

This result shows that the lowest-frequency
ganding wave has frequency ¢/2L and

n that dl the others are integer multiples of

1 thisvdue. The possble frequencies are
sad to form aharmonic series,

flz_’ f2:_’ f3:_7 cee (27)

The smdlest or fundamental frequency is fi; dl the others are overtones or harmonics.
The fundamentd frequency can aso be expressed in terms of the mechanical properties
of the rope, using Eqg. (12). Weinvite you to show that

1 [F
f, = Z\E‘ (29)

Thisrdation isthe main determinant of the pitch of stringed musicd ingruments.

Recdling the definition of anormal mode of avibrating system, we see that each value of
f and the corresponding vibration pattern congtitute a normal mode for this system. All
particles vibrate Snusoidaly with the same frequency, and there is a definite vibration
pattern relaing the motions of the various points. But, unlike systems containing afew
gprings and masses (and only afew norma modes), this system has an infinite number of
norma modes, one for each vaue of the integer index n. For each mode, n isthe
number of antinodes, and (n + 1) isthe number of nodes (including the end points).

From Eq. (24), the wave number k, for mode n is = n_Lp (29)

Findly, we can congruct awave function y, for norma mode n. We begin with Eq.
(22), with one change. In Eqg. (22), A wasthe amplitude of each individud traveing
wave. Itisusudly more convenient to make A in Eq. (22) the amplitude of the standing
wave. Wesmply replace (- 2A) by A and make the appropriate substitutions for k
and w, from Egs. (26) and (29). Thefind resultis

_ . p . pc
= Asinfn—=x|sinfn—t|. 30
Y, [ 2 j ( : j (30)
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The conditions y(0, t) and y(L, t)
(i.e, that theends of thedringat x =0
and x =L never move) arecdled
boundary conditions for the system.
Other, different boundary conditions

Antinodes

are also possible. Suppose instead of
tying theropeto afixed pointa x =0,
wetieit to aring that dides without
Nodes friction on arod oriented
perpendicular to the x-axis. Inthis
case thereis no transverse force on the
end of the rope, and Eq. (17) requiresthat fy/fx = O a thispoint. Thisendisthenan
antinode rather than anode. Anincoming wave is then reflected without inverson. If
the incoming wave is snusoidd, the totd wave function is

y(x,t) = Acos(kx +wt) + Acos(kx - wt). (31)
We can again use the cosine sum identity, Eq. (21), and replace (2A) by A asbefore, to
rewrite this as

y(x,t) = Acoswt coskx = (Acoskx) coswt . (32

If both ends of the rope are anchored to rings, as described above, then both ends are
antinodes. We invite you to prove that in this case the possible frequencies are given by
Eq. (27) but with the pogitions of the nodes and antinodes interchanged compared to the
figure on page 13-8. Findly, what happens when one end istied to adiding ring and the
other end is stationary? The answer to this question is | eft as an exercise.

Partial Reflection

Suppose two pieces of rope with different linear mass dendities m and m aretied
together and stretched, so thetenson F isthe samein both. Again let the equilibrium
position bethe x-axis, neglect any sag due to gravity, and place the knot (assumed
masdess) at the point x = 0. Now suppose asinusoidd wave originates in the left

(x < 0) 9deof theropeand travelsin the +x direction. What happens?

Experiment shows that there is areflected waveinthe x <0 region, and dso a
transmitted wave that goesinto the x >0 region. Well denote the total wave functionin

the x <0 regionas y. , and thewavefunctioninthe x >0 regionas y,. If weare
given the amplitude and angular frequency of the incoming wave, can we determine these
quantities for the reflected and transmitted waves?

Thefirg sep isto identify the boundary conditions that must be satisfied at the knot (the
point x =0). Firg, the rope must be continuous a thispoint, soa x =0, y. =V, :
y.(0,t) = y.(0,1). (33

Continuity of the rope aso requires that the angular frequency of motion w must be the
same in the two sides; otherwise this condition couldn't be satisfied at dl times.



13-1C 13 Mechanica Waves

Second, each section of rope exerts atransverse force at the knot, given by Eq. (17). The
total transverse force exerted on the knot by both ropes must, according to Newton's
second law, equd its masstimes its acceleration. But we have assumed the knot is
masdess; therefore the tota force must be zero. Since the tension is the same on both
Sdes, the dopes at thepoint x =0 aso must be the same.

Ty. 1y,
(L] - (Lj N (3
fix Jx=0 x Jx=0
With all these considerations in mind, we try a solution in the form
y. = Acos(k,x - wt) + Bcos(k,x +wt). (35

y, = Ccos(k,x - wt).

In these equations, A isthe amplitude of the incident wave, B the amplitude of the
reflected wave, (both inthe region x <0), and C the amplitude of the transmitted wave.

(intheregion x >0). Theangular frequency w isthe samein dl functions, but the wave
number k isdifferent (k1, kz) onthetwo sdesbecause the linear mass dengties
(m, m), and therefore the wave speeds (ci, ¢;), are different in the two sections of rope.

Consdering the first boundary condition, we evauate Egs. (35) a x =0 and subdtitute

the results into Eq. (33):
A cos(- wt) + Bcos(wt) = Ccos(- wt). Or,snce  cos(-a) =cos(a),
A+B=C. (36)

For the second condition, we take the derivatives of Egs. (35) indicated in Eq. (34) and
evduatetheresultsat x = 0:

-k Asin(-wt) - k,Bsin(wt) = - k,Csin(-wt).  Or,snce dn(-a)=- gn@a),
k. (A- B) = k,C. (37)
Now, assuming the amplitude A of the incident wave is known, we can solve Egs. (36)
and (37) amultaneoudy for B and C. We leave the details as a problem; the results are

MA’ C:iA_ (39)
K, +k, K, + Kk

Wenotethat if ky =kp,then B =0 and C =1. Then thereisno reflected wave, and the
transmitted wave has the same amplitude as the incident wave, both reasonable results.

B =

We can re-write Egs. (38) in terms of the wave speeds ¢; and ¢, inthetwo sections of
rope, using thereaions w = c1k; = c2kz. Again we leave the details as an exercise;
the results are

C,Cip c=_2% A (39)
CZ + Cl Cl + (‘2

B =
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Enerqgy in Wave Motion

Every wave mation has energy associated with it, and waves can convey energy from one
region of space to another. WEII explore these concepts in the context of waveson a
stretched rope or string.

Condgdering asmal segment of rope with length (in its equilibrium position) Dx, we see
that the kinetic energy of the ssgment is

2 2
K= Ime = 1(me)(M] :En{ﬂ) Dx. (40)
2 2 2 (1t
Thekinetic energy per unit length Dx is

fy
41
n{ﬂtj @)
The segment aso has potential energy because work is required to displace and deform it

from its equilibrium state. Suppose the segment isinitidly horizontd, & y =y, and

then the ight end is displaced a distance Dy = (ﬂy

. ) Dx. After this displacement, the
X

force acting &t the right end has a transverse component Fy with magnitude F Ey

The average transverse component of force during the displacement is half of this

(Fy)ave = EF Ey. Thework W done by Fy during the displacement is
1
ool = (22« (2o

Thisisequd to the potentia energy V of the sesgment Dx. The potentid energy per unit
Iength IS

fy
. [ﬂj @)
Findly, the total energy (kinetic plus potentia) of the segment Dx is
2 2
E = [EF{M] ; EF[M} } Dx. (49
2 |t 2 |\ x

To find the total energy of the entire rope, we integrate Eq. (44) on x over the length of
therope. For aropewithendsat x =0 and x = L, thetotd energy is

E:J' F”{Mj +1F(MJ ]dx. (45)
0 2 (1t 2 X
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Wave motion on arope can transfer energy from one region of the rope to another.
Congder apoint Q ontherope. The portion of ropeto theleft (i.e, smdler x) of Q
exertsatransverse force Fy onthe portion to theright of Q (larger x). According to
Eq. (17), thisforceisgiven by

- gy
y = Fﬂx' (46)

Asthe point moves transversaly, this force does work on the portion to the right of Q.
Thepower P (timerate of doing work) associated with thiswork is given by

P=Fy, =-F%%. (47)

Thusthereisaflow of energy inthe +x direction with corresponding power (time rate of
transfer of energy) given by Eq. (47).

Example: Derive an expresson for the rate of energy flow past a given point in arope
when thewave functionis y = Acos(kx - wt).

The derivativesin Eq. (47) are

M:- i - M: i -
X Aksin(kx - wt), i Aw sin(kx - wt).

We subdtitute these into Eq. (47) and combine factors to obtain
P = - F[- Aksin(kx - wt)][Awsinkx - wt)] and
P = FkwA? sirf(kx - wt). (48)

Severd aspects of EQ. (48) are noteworthy. Firdt, the expresson is never negative; the
flow of energy isdwaysinthe +x direction. Second, the energy flow rateis
proportiona to the square of the amplitude A. Finaly, because k= wic, itis
proportional aso to the square of the angular frequency w.

Thefactor Fkw inEQ. (48) can be transformed into amore generdly useful form by use
of therdlations w = ck and ¢ = F/m which are Egs. (8) and (12), respectively. We get

Fkw = (m:z)(ﬂ)w = mew? = m\/EWZ, and findly
c m

P = JmF w?A? sirf(kx - wt) (49)

At any given point on the rope, the average vaue of sn?(kx - wt) over one cycle (or
any integer number of cycles) is1/2. Thusthe average rate of energy tranamisson is

P, = %JrrF W2 AZ, (50)

Wenotethat P dependsonly on w, A, and the mechanica properties mand F of the
rope. The quantity 4/rrF is cdled the characteristic impedance of the rope.
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Complex Exponential Functions

Cdculations with Snusoidd functions can often be smplified by expressng themin
terms of exponentid functions with imaginary or complex arguments. The reation of
snusoida and exponentia functionsis explored in Section 12, Egs. (8) through (11).
We quote here some results of that discussion.

Any complex number or function z can be expressed intheform z=x + iy, where x

and y arereal numbers or functionsand i = +/- 1. Theexponentia function €* is
given by

e’ = ¢'(cosy +isiny). (51)
In particular, when x =0, this becomes

€Y = cosy +isiny. (52)
This rdationiscdled Euler's formula.

Thered part of acomplex quantity z isoften denoted by Re{Z], and theimaginary part
by Im[Z. ThusEq. (52) can beexpressed as Refe”’] = cosy, Im[e’] =siny.

Euler's formula shows that the wave function y(x,t) = Acos(kx - wt) for asinusoida
wave traveing inthe +x direction can be expressed asthered part of the function

Ae ") - Smilary, thefunction y(x,t) = Asin(kx - wt) istheimaginary part of
A ") A dnusoidd wavetravelinginthe - x direction can be expressed as

Ae W) “\wWeindudethe - signin the exponent so that al the exponentia functions
will have the same dependence on t, contained inthefactor e ™" )

Of course, the digplacements of points on arope are always real quantities, but we can
describe them conveniently as the red parts of complex functions.

Example: Consder again the problem of reflection of a snusoiddl wave a a boundary
(at the point x =0) between two sections of rope with different linear mass densities, as
discussed on pages 9 and 10. Let the wave functions on the two sides of the junction be

y = Aé(klx—wt) + Be—i(klx+wt)’ A :Cei(kzx—wt) (53)

The boundary conditionsat x =0 are given by Egs. (33) and (34). We note that taking
the derivatives of these functions with respect to x amountsto Smply multiplying eech

by afactor (ik) or (-ik). Applying these boundary conditions, we again obtain Egs. (36)
and (37):

A+B=C ad  kA- kb=kC.
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Beats, Dispersion, and Group Ve ocity

When two or more snusoidd functions having different frequencies are superimposed,
interesting new features gppear. To introduce the topic, we consider a stretched rope with
anend a thepoint x =0. Wegivethis point atransverse motion that is a superposition

of two snusoidal motions with equa amplitudes but dightly different frequencies wy

and w», as described by the expression

y(0,t) = Acos(w,t) + Acos(w,t) (54)

This expresson is more interesting when we rewrite it in terms of the average w, of the
two frequencies, and the amount Dw by which each differs from the average. That is,

w, =w, + Dw, w, =w, - Dw. (55)

(Weveassumed that wi >w,.) Now we subgtitute these expressions back into Egs. (54)
and expand each of the cosine functions using the cosine-sum identities. Two of the four
terms subtract out, the other two add, and the final result is

y(0,t) = [2A cos(Dwt)] cos(w,t) (56)

Asauming Dw ismuch amdler than w,, we can think of Eq. (56) as representing a
snusoidd motion with angular frequency w, and an amplitude (the quantity in square
brackets) that is not congtant but that varies dowly with time (with angular frequency

Dw) between zero and £2A. Hereisagraph of Eq. (56) (displacement as afunction of
time) for thecase Dw = w,/10.

The figure shows that the two snusoidd functions start out in phase at time t = 0, and
the total amplitudeis 2A. Astime goes on, one function oscillates with dightly grester
frequency than the other, and the phase difference increases successvely. When the
phase difference reaches 1/2 cycle, there is complete cancellation. After another equal
time interva, they are back in phase and the amplitude isagain 2A.

The solid curvesin the figure correspond to the factor in square brackets in Eq. (56), and
its negative; they condtitute the envel ope of the rapidly oscillating curve.

If the two sinusoida functionsin Eq. (54) are two sound waves, perhaps produced by two
dightly out-of-tune organ pipes, the lisgener hears a tone with angular frequency w, that
grows louder and softer, or beats, with angular frequency 2Dw =w; - w», cdled the beat
frequency. Thefactor of 2 results from the fact that the amplitude reaches maximum
magnitude twice for each cycle of the function cos(Dwt); the ear hears only the
magnitude of the amplitude variation. Thus the beat frequency is w1 - wy. Ligtening for
bests (or their absence) isthe principal means of tuning pipe organs and many other

musica ingruments.
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Now let's consder awave on arope that is produced by givingtheendat x =0 the
motion described by Eq. (54). We Il assume for now that the wave speed ¢ isthe same
for dl frequencies; later we Il explore what happens when the speeds of the two waves
aredifferent. Thefirst termin Eq. (54) produces a sinusoida wave given by

y, = Acos(kx - w,t), where k, =w,/c. (57)

Thewave function for the second term in Eq. (54) is obtained smilarly, and the total
wave function (from the principle of linear superpostion) is

y = Acos(kx- wit) + Acos(k,x- w,t) (58)
Asin Eqg. (55), we introduce the quantities k, and Dk, defined by the equations
k, = k, + Dk and k, =k, - DK. (59)

We substitute these expressions into Eqg. (58), re-group the terms, and expand the cosine
functions using the cosine-sum identities:

y = Acog|(k, + DK)x - (w, + Dw)t] + Acog(k, - Dk)x Dw)t]
= Aco(kx - w,t) +(Dkx - Dwt)] + Acos|(k,x - wot)- (Dkx - Dwt)]
= Acos(k,x - w,t)cos(Dkx - Dwt) - Asin(k,x - w,t)sin(Dkx - Dwt)

+ Acos(k,x - w,t)cos(Dkx - Dwt) + Asin(k,x - w,t)sin(Dkx - Dwt),
and firdlly

y = [2Acos(Dkx - Dwt)]cos(k,x - w,t). (60)

This result has the same form as Eq. (56), arapidly varying wave motion characterized
by the congtants ko, and wy,, with an amplitude that varies more dowly in both space and
time, as characterized by the constants Dk and Dw.

Attime t =0 the gppearance of thiswave looks just like the graph of y asafunction of
time (on page 13-14), but now we are plotting agrgph of y asafunction of x, i.e, the
shape of the gtring, at time t = 0. If the speed of propagation ¢ isthe samefor both
wavesin Eq. (58), the entire pattern represented by Eq. (60) movesinthe +x direction
with congtant speed ¢. One might wel imagineit as resembling a gtring of short, fat
sausage links moving dong the x axis with constant speed c.

It isworth noting that superposing the two sinusoida waves has the effect of

concentrating the wave disturbance in certain regions along the rope (the sausages), and
decreasing it in other regions (the pinched places between the sausages). We could creste
an even more localized disturbance by adding two more sinusoida wavesto cancd out
dternate sausagesin the string. We can even superpose an infinite set of snusoida
waves, centered around some angular frequency w, and wave number ko, usng a
formulation known as a Fourier integral.
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Thus by superposing many
Snusoidal waves we can congtruct
awavethat isin asenselocalized
in space (in contrast to the

; individud snusoidd waves,

1 which have no end). Such awave
iscdled awave packet or awave
pulse. Thiscongruction is of
central importance in quantum
mechanics; it hepsusto
understand how what we cdl a
particle can have both particle and
wave properties a the sametime.

Now we return to the question of what happensif the wave speed ¢ isdifferent for
different frequencies. It'salittle hard to imagine thisfor waveson arope, but itisa
familiar phenomenon for light and other ectromagnetic radiation. The refractive index
of atransparent materiad such asglassistheratio of the gpeed of light in vacuum to the
gpeed in the materid. This varies with frequency; for glassit is grester for violet light
than for (lower-frequency) red light. Inthiscase ¢ (= w/k) decreases with increasing
frequency. This phenomenoniscdled dispersion The angular frequency w isno
longer proportiona to the wave number k, but increases more dowly than k.

In Eq. (60), the speed of propagation of the rapid Snusoidal oscillationsis

w
c, = —2, 61
0 ko ( )
while the speed of propagation of the envelope curveis
Dw
Coy = — - 62
env Dk ( )

In the case of glass, discussed above, where w increases less than proportionately with

K, Cenv < Co. Theenvelope curvestravel at constant speed Ceny, Whiletherapidly-varying
oscillations inside the envelope move with a grester speed ¢, gppearing at the left Sde

of the envelope and moving out theright Sde. Thisis hard to describe, but asmple

Maple demondgtration helps to claify it.

The speed ceny  Of the envelope (and thus of awave pulse such as was described above)
is cdled the group velocity, and the speed ¢, of the central-frequency snusoidd waveis
cdled the phase velocity. Thisdidinction iscrucid in many aress of physics. A

snusoida wave, having no beginning or end, can't convey information from one point to
another; the maximum speed of tranamisson of informeation isthe group velocity. There
are gtuations where the phase velocity of awave is greater than the speed of light in
vacuum. Thismight seem to violate abasic principle of rdativity, but in al such cases

the group velocity is less than the speed of light, and so thereisno violation. Findly, we
note that if there is no dispersion, then the phase and group velocities are equal.



