6 Phase Plots and Vector Field Plots Fall 2003

Phase Plots

When a particle moves dong the x axis, we often represent the motion as agraph of the
coordinate x or thevelocity v = dx/dt asafunction of time t. A different but very usefu
representation isto plot the instantaneous postion x and velocity v of the particleasapoint in
aplane cdled the phase plane, with horizontal and vertical axesrepresenting x(t) and v(t),
respectively. Such aplot iscdled aphase plot. Each point inthe x-v phase plane represents
an ingantaneous state of motion (position and velocity) of the syssem. Asthe motion
progresses, the representative point (the phase point) traces out a path caled the phase
trajectory in the phase plare.

A smple exampleisthe phase plot for the undamped, undriven harmonic oscillator. The total
energy E of the system is congtant, and conservation of energy gives the equation
1mv? + 3 k<* = E = constant. 1)

The graph of thisequation inthe x-v plane (i.e,, the phase plot) isan dlipse. Asthe motion
evolvesin time, the phase point moves around this elipse, tracing out the phase plot once each
cyde. It dwaysmovesinthe clockwise sense; can you see why? For every periodic
motion, the phase plot isaclosed curve that istraced out once each cycle.

When damping is present, the motion is not strictly periodic. The phase trgectory isno longer a
closed curve but a spird that curvesinto the origin as the motion dies down.

If the equation of motion (from SF = ma) can be solved exactly, it is easy to plot the phase
trgectory. For the undamped harmonic oscillator, one solution is

X = Acosw,t. 2
For an underdamped oscillator, one solution is
x = Ae 9" coswyt. 3

Teking A=1, w, =1, and g=0.1, we obtain the phase plots shown below.
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For asystem in which the total force dependsonly on x and v, thatis, F(x,v), knowing a
snglepaint (Xo, Vo) 0N the phase trgectory is dways sufficient to determine the entire
trgectory, and hence the entire motion of the particle. To see why thisis so, we note that the
equation of motion obtained from Newton's second law (SF = ma), can dways be
represented in terms of two coupled first-order equationsin x and v, namely,

dx dav _ 1

— = and — ==F(x,V 4

= = = F(x) @
If thevauesof x and v at oneingant are known, the change in each quantity during the
following amdl timeinterval Dt can be computed:

x=Xpr=vpt  ad vz =FOY (5)
dt dt m
In thisway the position of a neighboring point on the phase trgjectory can be computed. By
iterating this process, we can congtruct the entire trgectory. By making Dt very smdl, we can
compute the trgectory with as great precison as we like (with some sgnificant exceptions). In
fact, thisis the basic idea behind numerica solution of differential equations, usng Maple or
amilar sygems.

The phase trgectory is a convenient way to represent genera features of the motion. The
possible phase trgjectories can have various shapes. |If the trgjectory isaclosed curve, aswith
the undamped oscillator, the resulting motion is periodic. The trgjectory of an underdamped
oscillator spirdsin asymptoticaly (at large t) toward the fixed point

(x =0, v=0), independently of initid conditions. Such apoint iscdled an attractor.

A system can have more than one attractor; an example is a particle in atwo-well potentia-
energy function, with two attractors. Which attractor represents the fina state depends on initia
conditions, and the choice can be very sendtive to smadl changesin initia conditions. Each
attractor corresponds to arange of initia conditions, aregion in phase spacethat iscdled a
basin of attraction.

The attractor need not be a point or a set of points. Suppose the damping forceisgiven by F
=av - bv®, where aand b are positive constants. For large v, F isoppositeto v andisa
damping force. But when v issmdl, F hasthe samedirection as v and tendsto build up the
oscillations. In this case the motion approaches a periodic motion thet isindependent of initia
conditions and in which, on the average over a cycle, the two damping terms cancd out. This
find steady-date oscillation iscdled alimit cycle or limit-cycle attractor.

Vector Fidd Plots

At any point in the phase plane, the direction of atrgectory passing through that point is
determined by Egs. (5). We canthink of Dx and Dv asthe components of avector inthe x-
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v phase plane. At each point this vector must be tangent to the trgectory passing through the
point. Usudly, in order to avoid undue clutter on the phase plane, we plot a unit vector at each
point in agrid of representative points, showing the direction of a phase trgjectory passing
through each point. This representation is called avector field plot, or smply a field plot.

A smple exampleisthefidd plot for undamped smple harmonic motion. Equations (5) take
theform

Dx = v D, DV:-%X[I ()
For amplicity, wetake k=1, m=1; then
Dx = v D, Dv = - xDt. (7)

Hereisavector fidd plot (made with Maple) for this smple motion.
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An important festure of vector fidd plotsisthat they can be obtained without actually solving
the differentid equations. Thisis particularly useful when solutions cannot be expressed in
closed form but have to be obtained by numerica gpproximation. The vector field plot can
aways be obtained from Egs. (5) and used to understand generd features of the motion.

To compute a unit vector on avector field plot, we introduce the unit vectors | and

in the horizontd and verticd directions, repectively, in the phase plane. Then, from Egs. (5),
the vector that represents the displacement of the representative point in the phase plane during
time Dt is

ID(+JD/_IVDt+jF(XV)

(8)

A

To obtain aunit vector n inthe direction of this vector, we divideit by its magnitude,
which isthe square root of the sum of squares of components. From Egs. (5),
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|f Dx + ]Dv| = J(v Dt)? +[F(x, v) Dt/m] .

A

Thusthe unit vector N a each point (X, v) inthe phase planeisgiven by

f = v +fF(x,v)/m ©)
\/v2 +[F ()

Using this, we can compute the componentsof A for any point (X, v) in the phase plane, and
hence congtruct the field plot. Note again that we have not solved the differential equations for
X(t) and v(t); dl that isneeded to congruct the field plot isthe function F(x, v).

Once we have the field plot, we can sketch out a phase trgectory (representing a

possible mation of the system) for any initid conditions (Xo, Vo), represented by

the starting point in the phase plane. Wejust dart a (o, Vo) and sketch acurve

that is tangent to the unit vector A at each point. In the above example, it is easy to see that
the phase trgjectories are concentric circles.

Note that a phase trgjectory can never crossitsaf. At each point (x, v) inthe phase plane, the
direction of the unit vector  isdetermined by thevauesof x and v, according to Eq. (9).

Time-Dependent For ces

The totd force acting on the particle may depend on time; then we denoteit as F(x, v, t). A
familiar example is the damped, snusoiddly driven harmonic oscillaor, for which

F(x,v,t) = -kx - bv- F,coswt. (20

The spring force depends on X, the damping force dependson v, and the driving force
dependson t. Inthiscase, Eq. (9) must be rewritten as
ho= VT F(x,v,t)/m2 . (12)
Jvz +[F(x v, t)/m]

Theunit vector A a each point in the phase plane now varies with time, and a phase trgjectory
can crossitsdf. Supposethat a a certain time the phase point isat (X1,v1), and then it returns
tothissame point at alater time, X and v arethe same as before, but t isdifferent, and the
unit vector given by Eq. (11) may have adifferent direction. If so, the phase trgjectory crosses
itsdf at thispoint. Later wewill see examples of driven oscillations where the driving forceis
periodic but the resulting mation is chaotic, with a phase plot thet is a tangled phase trgectory
with many crossings.

When a periodic driving force is present, the forced- oscillation motion of the sysem may, in the
limit of large t, approach aperiodic motion that isindependent of initid conditions. Such alimit
is represented as a closed curve on the phase plot, and it isagain cdled alimit cycle. The
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phase plot may be a curve that spirdsin or out, asymptaticaly gpproaching the limit-cycle
curve. A limit cycleisaso consdered to be an attractor. There may be more than one possible
limit cycle, as with the two-wel|l potential. In such acase, initid conditions determine which limit
cycle represents the final state of motion, and again the choice can be very sensitive to small
changesininitid conditions.

In some cases where there is a periodic driving force, the resulting forced oscillation is not
periodic. In such cases, the phase trgjectory does not approach alimit cycle, but wanders
around the phase plane. The details of the trgectory may depend very criticaly on the initia
conditions, and predicting the long-term motion of the system isimpossible. Such motion is said
to be chaotic. The study of chaosisatopic of great current interest, with gpplicationsin many
aress of physics, such as turbulent flow, phase trangitions, and others.

Phase Plots with M aple

For systems where the differentid equation (from SF = ma) can be solved exactly,
it is easy to make phase plots using the parametric form of the Maple plot command. Her€'s
an example. The differentia equation for the damped harmonic oscillator is

X + 2g% + Wy2x = O, (12)
If the system is underdamped, then one solution is
x = Ae 9" coswgt. (13)

Aswith any Maple plot, we need to subgtitute specific numerica vaues for the parameters.
Supposewechoose A=1, wg=1,and g=0.1. You can verify that this corresponds
gpproximately to theinitid conditions (a timet =0) X, =1, v, =-0.1. To plot the phase plot
for theintervd t =0 to 6p, corresponding to three cycles of the damped oscillation, a
possible Maple scheme would be

restart;
X = exp(- 0.1*t)*cos(t);
v = diff(x, t);

plot([x, v, t = 0..6*Pi]);

If the differentid equation hasto be solved numerically, then we have to use odeplot.
Suppose we choose to solve Eq. (12) numerically, using the same numerical values as above.
The Maple code goes like this:

restart;

with(plots, odeplot);

diffeq := diff(x(t), t$2) + 0.2*diff(x(t), t) + x(t) =0;
initl :=x(0) = 1;

init2 := D(x)(0) =-0.1;
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solution := dsolve({diffeq, init1, init2}, x(t), numeric);

odeplot(solution, [x(t), diff(x(t), t)], 0..6*Pi);
Therange of vduesof t isnot insde the square brackets, and it is stated as 0..6*Pi, not t =
0..6*Pi. Thisisbecause Mapletreats solution asafunction, not an expression.
If you're usng an older verson of Maple, this plot may look alittle lumpy. To smooth it out,
plot more points than the default number (usudly 50) by adding the atement numpoints =
100 tothe odeplot command:

odeplot(solution, [x(t), diff(x(t), )], 0..6*Pi, numpoints = 100);

The newer versons of Maple do this automaticaly.

Vector Field Plotswith Maple

Maple has avery useful and easy facility for creating vector field plots. It is cdled dfieldplot.
It is part of apackage called DEtools, and (like some of the facilitiesin the
plots package) it has to be loaded explicitly by usng
with(DEtools, dfieldplot);
Heré's how it works. Suppose you have two coupled first-order equations:
dx dv
— = f(x,V), — = g(x,Vv), 14
o= few, o= axy) (1)

where f(x, v) and g(x, v) are known functions. Firg give the equations names, such as

eql := diff(x(t), t) = f(x,v);

eq2 := diff(v(t), t) = g(x.v);
Then the syntax for dfieldplot is

dfieldplot({eql, eq2}, [x(t),v(t)], t=0..5,x = a..b, v =c..d); (15)
The equations are enclosed in curly brackets becausethey areaset. x(t) and v(t) are
enclosed in square brackets because they are alist. (They are the coordinates in phase space,
and the order designates which is on the horizontal axis and which on the vertical.) The ranges
of vauesfor x and v are shownin the usua way. Maple dso ingsts on arange of vaues for

t, whichisirrdevant for our problem because f(x,v) and g(x,v) aren't functionsof t. Sojust
put in some random vaues such as 0..5.

The default grid of unit vectorsis 20° 20. Y ou can change that with the optiond Statement at
theend: dirgrid =[30, 30] or however many points you want in the grid. You can dso use
the usud plot options such as color = black and the various title satements.

Example: The code used to creste the example vector field plot aboveis

restart;
with(DEtools, dfieldplot);
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eql := diff(x(t), t) = v(t);
eq2 := diff(v(t), t) = - x(b);
dfieldplot({eql, eq2}, [x(t), v(t)],t=0..2, x=-5..5,v=-5..5,
dirgrid = [30, 30], color = black);
To get avector fidd plot for the damped oscillation problem discussed earlier, just add the
term - 0.2*v(t) to theright Sdeof eg2. Do you see why thisisthe right thing to do? Note
that the arrows and phase trgectories now spird in toward the origin.

Thefunctions f and g in Egs (14) may dso containtime t explicitly. Inthiscasethe
dfieldplot command, Eq. (15) must include the actua range of values of t of interest.

Superimposing Plots

Sometimes it’ s useful to superimpose two plots, e.g., avector field plot and a phase trgjectory.
To do thisyou first create what are caled plot structures. Asan example, to make aplot
gructure for afidd plot such as Eq. (15), choose numericd valuesfor a, b, ¢, and d, and
use

plotl :=dfieldplot({eql, eg2}, [x(t),v(t)], t=0..5, x =a..b, v=c..d):

This computes al the data needed for the plot but doesn’t actualy display it. End the statement
with a colon, rather than a semicolon, to prevent displaying ablizzard of data. Then to display
the plot use display(plotl); Thecommand display ispart of the plots package, so it first
has to be loaded explicitly usng with(plots, display);

The advantage of plot structuresis that once you have created them you can superimpose two
or more plots by asking Maple to display a set of plot structures, such as

display({plot1, plot2});

Example: The following code will produce the fidd plot shown on p. 6-3 (with red arrows),
superimposed on a phase plot (in black) for undamped smple harmonic motion with w =1
and amplitude 3. Try it!

restart;

with(DEtools, dfieldplot);

with(plots, display);

eql ;= diff(x(t), t) = v(t);

eq2 := diff(v(t), t) = -x(b);

plotl := dfieldplot({eql, eq2}, [x(t), v(t)], t=0..2, x=-5..5, v =-5..5,
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dirgrid = [30,30], color = red):
plot2 := plot([3*sin(t), 3*cos(t), t = 0..2*Pi], color = black):
display({plot1, plot2});
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