
33-231   Physical Analysis Fall 2003 
 
Problem Solutions:  Set 7  (October 15, 2003) 
 

30. a)  sin sin ; cos cos ,2 2
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     Substitute  ω  = 2π/T,  then evaluate 

   the integrals using Maple.  
 
 c) In small-damping approximation,  
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  The average value of sin ( )2 ω ϕt + over a cycle is  1/2,  and  Pout  is appreciably 
  different from zero only when  ω ω≅ o ,   and we get 
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  This is greatest when the denominator is smallest, i.e., when  ω = ωo.  Then 
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 d) Both  F  and  v  are proportional to  Fo,   amplitude is greatest when  ω = ωo.  
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sin( ) .   Also,  F = Fo cos ωt. 
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  The average value of  sin ωt  cos ωt  over a cycle is zero, and the average value 
  of  cos2ωt  is  1/2. 
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      (continued) 
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30.  (continued) 
 
  From class discussion and  small damping approximation (when  ω  is near  ωo,) 
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  When  ω  is close to  ωo, 
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  Note that this is equal, apart from sign, to  Pout   as found in (c).  Thus this 

  result directly verifies  conservation of energy;  P Pin out+ = 0.  

  Pin   is greatest when the denominator is smallest (at  ω = ωo).  The maximum 
  value is 
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 b) Use Maple to calculate  
dv

d
max

ω
,  set the result equal to zero, and solve for  ω.   

 Result:  vmax is greatest when  ω = ωo, and the value of  vmax is then   v
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32. a) When  |x| < 1,  the velocity-dependent force has the same direction as  v, so it  
  adds energy to the system.  When  |x|> 1,  energy is dissipated.  Hence the motion  
  never damps down to  x = 0;  instead, it tends toward some sort of limit cycle. 
 
 b) The limit cycle has a period of approximately  6.6 s.  The amplitude is about  
  2.0 m,  and the maximum velocity is about 2.6 m/s.  The limit cycle is 
  independent of the initial conditions; a trajectory that starts at a large value of  x 
  or  v  will spiral in to smaller values, while  a trajectory that starts at a small   
  value of  x  or  v  spirals out to larger values.  The same limiting trajectory (limit  
  cycle) is approached in each case.  The final state of motion is periodic and is 
  independent of initial conditions.  This limiting trajectory is also called an  
  attractor.  For a damped oscillator with damping force  F = −bv,  the attractor is 
  the origin in phase space, i.e., the point  x = 0, v = 0. 
 

 c)  
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   restart; 
   eq1 := diff(x(t), t) = v(t); 
   eq2 := diff(v(t), t) = -x(t) + (1 - x(t)^2)*v(t); 
   with(DEtools, dfieldplot); 
   dfieldplot({eq1, eq2}, [x(t),v(t)],  t = 0..10, x = -3..3, v = -3..3, 
     dirgrid = [30, 30], color = black); 
 
  
 d) From the vector field plot, if the phase point is initially at x = 0,  v = 0  and is 
  displaced in any direction (by giving the particle a small displacement or  
  velocity),  the phase point tends to move away from the origin (unlike, for  
  example, the damped harmonic oscillator, where all the phase trajectories spiral  
  in toward the origin in phase space). 
 
  This same conclusion also follows from looking at the equations in (c), starting 
  at  x = 0,  v = 0,  then giving  x  or  v  a small increment and observing where the  
  phase point goes. 
 
 
 
 
 


