Physical Analysis

Problem Solutions: Set 2 (September 10, 2003)

6. a) Units of a are $m^{-1}s^{-2}$, i.e., (meters)$^{-1} \times$ (seconds)$^{-2}$.

 b) $x = \frac{2}{at^2} + \text{(constant)}$.

 d) $x = \frac{2}{4t^2 + 1}$.

 g) $t = \pm \frac{1}{2} \text{ s}$.

7. a) From $\Sigma = ma$, $\frac{dv}{dt} = -g - bv$. Separate variables and integrate:

\[
\frac{dv}{v + \frac{mg}{b}} = - \frac{b}{m} \, dt,
\ln\left(v + \frac{mg}{b}\right) = - \frac{b}{m} \, t + \text{const.}
\]

\[
v + \frac{mg}{b} = e^{-(b/m)t + \text{const}} = \text{(const)} \, e^{-(b/m)t}.
\]

At time $t = 0$, $v_o + \frac{mg}{b} = \text{const}$. Substitute and re-arrange to obtain

\[
v = - \frac{mg}{b} + \left(v_o + \frac{mg}{b}\right) e^{-(b/m)t} = \frac{dy}{dt}.
\]

Separate variables and integrate again to obtain

\[
y = - \frac{mg}{b} \, t + \left(v_o + \frac{mg}{b}\right) \left(-\frac{m}{b}\right) e^{-(b/m)t} + \text{const.} \quad \text{At time } t = 0,
\]

\[
y_o = \left(v_o + \frac{mg}{b}\right) \left(-\frac{m}{b}\right) + \text{const} \quad \text{Substitute into previous equation to obtain}
\]

\[
y = y_o - \frac{mg}{b} \, t + \frac{m}{b} \left(v_o + \frac{mg}{b}\right) \left(1 - e^{-(b/m)t}\right).
\]

b) See bboard post for Maple code.

c) Substitute into previous results and simplify.
8. a) \(e^{-(b/m)t} = 1 - \frac{b}{m}t + \frac{b^2t^2}{2m^2} + \cdots \).

b) \(v = -\frac{mg}{b} + \left(v_o + \frac{mg}{b} \right) \left(1 - \frac{b}{m}t + \frac{b^2t^2}{2m^2} + \cdots \right) \)

\[= v_o - gt - \frac{b}{m}v_o t + \frac{mg}{b} \frac{b^2t^2}{2m^2} + \frac{mb^2t^2}{2bm^2} + \cdots \]

Because \(t \) is finite, the last three terms (and all successive terms) go to zero as \(b \to 0 \), leaving \(v = v_o - gt \), as expected.

c) \(y = y_o - \frac{mg}{b}t + \frac{m}{b} \left(v_o + \frac{mg}{b} \right) \left[1 - \left(1 - \frac{b}{m}t + \frac{b^2t^2}{2m^2} + \cdots \right) \right] \).

Multiply out:

\(y = y_o - \frac{mg}{b}t + v_o t + \frac{mg}{b}t - \frac{v_o t^2 b}{2m} - \frac{1}{2} gt^2 \).

The second and fourth terms cancel and the fifth (and all successive terms) go to zero as \(b \to 0 \), leaving

\(y = y_o + v_o t - \frac{1}{2} gt^2 \), as expected.

9. a) \(-bv^2 + mg = m \frac{dv}{dt} \). When \(\frac{dv}{dt} = 0 \), \(v = v_T = \sqrt{\frac{mg}{b}} \).

The units of \(b \) are \(\text{force} \ (\text{velocity})^2 = \frac{\text{kg} \ \text{m/s}^2}{\text{m}^2/\text{s}^2} = \frac{\text{kg}}{\text{m}} \). The units of \(v_T \) are then \(\sqrt{\frac{\text{kg} \ \text{m/s}^2}{\text{kg}/\text{m}}} = \text{m/s} \), as expected.

b) \(v = \sqrt{\frac{mg}{b}} \tanh \sqrt{\frac{gb}{m}} t \). Let \(\tau = \sqrt{\frac{m}{gb}} \); then \(v = v_T \tanh \frac{t}{\tau} \).

The units of \(\tau \) are \(\sqrt{\frac{\text{kg}}{(\text{m/s})^2 \text{(kg/m)}}} = \text{s} \).

(as required to make the quantity \(t/\tau \) dimensionless).

(continued)
9. (continued)

c) \[y = \frac{m}{b} \ln \left[\cosh \left(\sqrt{\frac{gb}{m}} t \right) \right] = v_T \tau \ln \left[\cosh \left(\frac{t}{\tau} \right) \right]. \]

e) From Maple `taylor` command, the first term in the Taylor expansion of \(v(t) \) reduces to \(gt \). All other terms contain positive powers of \(b \) and therefore go to zero as \(b \to 0 \). Similarly, the first term in the Taylor series expansion of \(y(t) \) is \(gt^2/2 \). All other terms contain positive powers of \(b \).

10. a) \[b = \frac{CA\rho}{2} = \frac{(0.8)(1 \text{ m}^2)(1.2 \text{ kg/m}^3)}{2} = 0.5 \text{ kg/m}. \]

\[v_T = \sqrt{\frac{mg}{b}} = \sqrt{\frac{(80 \text{ kg})(10 \text{ m/s}^2)}{0.5 \text{ kg/m}}} = 40 \text{ m/s} = 90 \text{ mi/hr}. \]

\[\tau = \sqrt{\frac{m}{gb}} = \sqrt{\frac{80 \text{ kg}}{(10 \text{ m/s}^2)(0.5 \text{ kg/m})}} = 4 \text{ s}. \]

b) With given numbers, \(v = (40 \text{ m/s}) \tanh(t/4) \) and \(x = (160 \text{ m}) \ln \cosh(t/4). \)

At 90\% of \(v_T \), \(v = 36 \text{ m/s}. \) \[t_{90} := \text{fsolve}(36 = 40 \tanh(t/4), t); \]
yields \(t_{90} = 5.9 \text{ s}. \)

Substituting this into the expression for \(x \), we get \(x = 130 \text{ m} = 430 \text{ ft}. \)

c) Let the ball radius be \(R \). From above analysis, \(b \) is proportional to \(A \) and hence to \(R^2 \). Mass \(m \) of ball is proportional to its volume, and hence to \(R^3 \). The terminal velocity \(v_T \) is proportional to \(\sqrt{m/b} \) and hence to \(\sqrt{R} \).