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Periodic M otion

Any moation that repeets itsdlf over and over with a definite cycle is said to be periodic.
The rate of repetition is described by the period (T), thefrequency (f), or the angular

frequency (w), defined asfollows

T = period = amount of time for one cycle;
f = frequency = number of cyclesper unittime;,  f =1/T
w = angular frequency = 2pf.

The amplest example of periodic mation in amechanica sysem isthe harmonic
oscillator; itsmationiscaled simple harmonic motion (SHM). The defining
characteristicsof SHM are a stable equilibrium position and arestoring force thet is
directly proportional to the displacement from that position.

In many systems the restoring force is appr oximately proportiond to the displacement
from equilibrium; the resulting mation is then gpproximately smple harmonic. Thus

SHM isuseful asamodel that describes the behavior of such systems approximately but
not exactly. (But note the caution on page 4-5, concerning exceptional caseswhere F is
not proportiona to x, even for very smal displacements.)

Undamped Har monic M otion

In its smplest form the harmonic oscillator conssts of amass m that movesdong a
draight line with coordinate x, under the action of aforce F that acts dong thisline and
has magnitude proportiond to x, with proportionaity constant k. (For example, aspring
that obeys Hooke'slaw) At x =0, F =0, sox =0 isapostion of stable equilibrium.
The force can be represented andyticaly as F = - kx. The negative Sgn shows that the
directionof F isdwaystoward the point x = 0, opposite to the displacement. The
congtant k iscaled the force constant or spring constant for the system.
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When F = - kx, Newton'ssecond law (SF =ma) gives

d?x d?x k

= - =X 1
dt? o dt? m @
In these equations (caled differential equations because they contain derivatives), x
must be some function of t such that when this function and its second derivetive are
substituted into ether equation, the left and right Sdes areredlly equa. Two possibilities
are

x:sin\/Kt and x:cos\/Kt. 2
m m

These functions are said to be solutions of the differentia equation. 'Y ou should verify
this by subgtitution.

-kx = m

Any differentid equation that contains x and its derivatives only to the first power
(cdled alinear differentid equation) has the property that every linear combination of
solutionsis dso asolution. Thus amore generd solution is

/k . /k
x = Acos,[—t + Bsin,[—t, 3
m m

where A and B can be any congants. It can be shown that thisis the most general
solution of the differential equation, and therefore represents dl the possible motions of
the sysem. The generd solution may aso be written in the dternative form

a k .
X = CCOS(\/%'[+J ] (4)

Weinvite you to prove the equivaence of Egs. (3) and (4). Usetheidentity for the
cosine of the sum of two angles, to show that the forms are identicd if

A=Ccosj, B=-Csinj, o C=+A?+B?, | :arctan(%). (5)

. k
Each of these functions goes through one cycle when the argument \/% t goesfrom

zeroto 2p, i.e,inatime T (the period of the motion) such that

k m
‘/—T:Z T=21/—. 6
P or P K (6)

This result shows that greeter mass m means more time for one period, while greater
force constant k meanslesstime for one period as we might have predicted.
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From the definitionsof f and w, wedso find

f;l:iﬁ and W:@: £ (7)
T 2pVm T m

Anticipating later developments, we will usethe notation w, = /k/m  (rather than w)
for angular frequency Intermsof w,, the possible motions can be written as
x=Acoswt + Bsinw,t or Xx=Ccos (w,it+j). 8

Thecongtants A and B, or C and j , aredetermined by the initid conditions of the
gystem, i.e, the podition X, and velocity v, a theinitid time t = 0. Specificaly,

2 -
A=x, B:V\(I—O or C= /x02+v\\/l°2, j =arctan(wv)? j 9)
0 o 0’0o

Y ou should derive these relations, to verify the equivalence of the two forms of Eq. (8)

Damped Har monic Motion

Damping is the presence of an additiona force, frictiond and dissipative in nature, that
causes the oscillations of the system to die out. The motion isthen not srictly periodic;
each cycle has somewhat smdler amplitude than the preceding one. When the frequency
remains constant as the amplitude decreases, the motion is said to be quasi-periodic.

The smplest case to treat andyticaly isaviscous friction force that is proportiond to the
speed v = x ofthemass F = - bv, where b isacongant that describes the strength
of the damping force. (The negative 9gn showsthat F aways opposes the motion.)
The Newton’s second law equation (SF = ma) then becomes

dx _ d®x d?x , boox k

-kx - ba = mF, or dt_2 ﬁa + EX = 0. (10)

Using the abbreviation g = % dong with W02 :% and the abbreviations

2

% =x and % = X (anotation introduced by Newton), we can write this

differential equation compactly as

X + 20X + W,2X = O, (11)
Solution of Equation (11) isdiscussed in detall in Stewart and in Edwards and Penney.
We subdtitute atrid solutionintheform x = e™ . Thisisasolution of Eq. (11) if p
stisfies the characterigtic equation p? + 2gp +w,” = 0 Thisequation has two unequal

red rootsif g > w,, twocomplex rootsif g < w,, and two equal red rootsif g= wp.
Well discuss these three cases separately.
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Overdamping
Inthefirst case (9> wo), we introduce the abbreviation gy = 1/92 - woz; then the
most generd solution is

x=Ag 019 + Bg @9 = g% (A% + Bed), (12)
where A and B are congtants. This solution can be verified by direct substitution usng
Maple. Because gy isdwayslessthan g, bothtermsin Eq. (12) are dways decaying

exponentias, with no oscillation. When g isgreater than wy, the system is said to be
overdamped. If theinitia conditions(attime t =0) arex, and Vo, then

A:_(g'gd)xo-'-vo’ B:(g+gd)xo+vol (13)
294 294

Underdamping

Inthe case g<w, weddfine wy = +/w,> - g?; thenthemost general solution is
x = €% (Acosw,t + Bsinw,t), (14

where A and B are condants. This solution can be verified by direct subgtitution using
Maple. It represents a decaying oscillation with an angular frequency wy that isless
than w,, with exponentialy decaying amplitude. Such asystemissaidto be
underdamped, and the motion is quas-periodic. Intermsof theinitid conditions X,
and v, atime t=0, A and B aegivenby

A=x,, Bz o*0% _ VYo+0% (15)
\lWoz'g2 Wd

Notethat if g= 0, these expressions reduce to those for the undamped case (Egs. (9)),
and aso that inthiscase wy = Wo.

Critical Damping

A specid case occurs when the damping isjust large enough sothat g =w,. Thenthe
characteristic equation has a double root, and the genera solution is

x = (A+ Bt)e'¢. (16)
The congtants A and B are again determined by the initid conditions X, and Vo:
A =X, B =gx +V,. 17)

This conditionis caled critical damping. Thereis no oscillation, but the approach to
equilibrium is fagter than with overdamping.

The reader is urged to verify the solutions given by Egs. (12), (14), and (16), and to
derive the initid- condition relations given by Egs. (13), (15), and (17).
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Energy Relations for Undamped Oscillator

Thekineticenergy K and potentid energy V for the harmonic oscillator are given by
K=1mv? =1inx?, V =1k<. (18)

For the undamped oscillator, the forceis conservative, and thetotd energy E =K +V
(kinetic plus potentid) is congtant. To show this, we caculate the time derivative of E:
de _d

a_E(K+V):m>'<x+kx>'<:>'<(m><+kx). (19

Because of Eq. (1), mX+ kx =0, so dE/dt =0 andthetotd energy E iscongant.

E=3m®+1ke® = constant. (20)

If we plot agraph with x onthe horizontd axisand X = v ontheverticd axis, Eq. (20)
isthe equation of an dlipse. The two-dimensiond space of thisgraphiscaled a phase
space, andtheplotiscaled a phase plot. Eachpointinthe x-v plane representsan
ingtantaneous State of the particle (position and velocity). Asthe motion progresses, the
representative point traces out a curve caled the phase trajectory in thisplane. For
undamped SHM, the phase trgjectory isan dlipseinthe x- v plane.

If the motion of the system is described by Eq. (8), then it can be shown that the total
energy isgiven by

E = Lk(A? +B?) = 1kC%. (21)

Energy Reationsand Q for Damped Oscillator

When adamping force F = - bv is present, the total energy is no longer constant. The
rate of change of total energy istill given by Eq. (19), but it isnot zero. Rewriting
Eg. (10)as mx + kx = - bx and subgtituting into Eq. (19), wefind
‘i—f = -bx? = - (bX)X = - bx? (22)
Thishas asmple physicd interpretation; when aforce F acts on abody moving with
velocity v in thedirection of the force, the power (rate of doing work) is Fv. Herethe
damping forceis - bx, s0 Eq. (22) represents the (negétive) rate at which the damping
force does work on the system, equd to the rate of change of itstotal energy. Note that
dE/dt is never pogtive, the energy continuoudy decreases.

It is of interest to compare the energy lossin one cycle, DE, for the underdamped
oscillator, totheenergy E @ the beginning of that cycle. We define a quantity Q:

E
Q=2p

= (23)
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Larger vduesof Q correspond to wesker damping, smdler DE, and more dowly
decaying oscillations, and conversdy. (In remote antiquity, when this andyss was
gpplied to L-C resonant circuitsin radio equipment, Q was an abbreviation for quality
factor. Itisameasure of the sharpness of aresonance peak in the circuit. More about
resonance later.)

Light Damping Appr oximation

We can derive a rdation of Q to the system parameters w, and g. Well limit our
discusson to sysemswith light damping. In such systems, the maximum displacements
from equilibrium change relativey little from one cydeto the next and the oscillations

die out gradudly over many cycles. Then the exporentid factor in Eq. (14) changes by
only agmdl fraction of its value during one cycdle. The period of the damped oscillation
IS 2p/wy, S0 the condition for light damping is

ﬂ<<1, oo g<<w, and g<<w,, SO w, @w,. (24)

Wy

In the light-damping gpproximation, wy isvery nearly equd to the undamped angular
frequency w,. For such a system we expect that DE will be much smdler than E, so the
quantity Q defined by Eq. (23) will be much larger than unity. Thefollowing

discussion will confirm this expectation.

Supposethe mationisgivenby x = Ae ' cosw,t. Thenthe maximaand minimaof x
occur gpproximately when wqgt = np, wheren isaninteger At these points, the body is
at rest and the energy is entirdy potentid. In particular, a time t = 0, thetota energy is

E, = %kAZ, and at the end of one period, when wgt = 2p and t =2p/wy,

L = Lk(Ae @9 ) = 1ppze o, (25)
The fractiona change of energy during one cycle is then (gpart from sign)

|DE| - E-E =1- B _ 1- g 4P9/wy (26)

|E| E E

In the light damping approximation, g ismuch samdler than wy, so we can expand the
exponentid functionin Eq. (26) inaTaylor series, keeping only thefirst two terms:

e 4pgl/wy @1 - 4pg ’ (27)
Wy

and Eq. (26) becomes approximately

IDE| _ 4pg 4pg
Bl @wa @, )

Findly, we subdtitute this result into the definition of Q, Eq. (23):

E w w
=2p—] =2 e | =2, 29
Q IO‘DE p[4pg) 29 29
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Wedsonotethat |DE/2p| represents the energy loss per radian (i.e., per 1/2p cycles).
Thus an dternative definition of Q is

_E
DE

per radian

Q:

The above andyss shows that in the light-damping gpproximetion, if the totd energy E
ismessured at corresponding points on successive cycles, it decays exponentiadly
according to

E =Ee¢e?*, (30)
where E, istheenergy a theinitid time t =0. Equation (29) dso showsthat alightly
damped system, for which g<<w,, hasavdueof Q much larger than unity.

The rate of energy loss varies during each cycle it is grestest when v isgreatest (i.e, a
x =0), and zero a points of maximum displacement (i.e,, when v =0). The phase
trgectory for underdamped oscillations is not an elipse but a spird that curvesin toward
the origin of the x-v plane.

Forced Oscillations -- Undamped System

A dtuaion of great practicd interest occurs when an additiona time-dependent force
F(t) (whichwewill cdl adriving force) is gpplied to aharmonic oscillator. An
important specia caseis adriving force that varies sinusoidally with time, which we may
represent as

F(t) = F, coswt. (31

Inthisexpression, F, isacongtant that characterizes the strength of the driving force,
and w isitsangular frequency. Notethat ingenerd w isnot equd to either w, or wy
in the preceding discussion.

The additiona force enables the system to undergo amotion caled forced or driven
oscillation that would not be possible without it. In particular, the syssem can move with
an undamped sinusoidal mation having the same angular frequency as the driving force.

If thereisadriving force given by Eq. (31), and no damping force, the equation of
moation (from SF =ma) is

d?x
dt?
It isnatural to look for a solution to this equation that has the same frequency asthe
driving force. Thereforewetry asolutionintheform x = A' coswt, where A' isa

congtant to be determined. Subdtituting thisinto Eq. (32), we find thet it isasolution
only if

-kx + F, coswt = m o X + wWS'x = %cosvvt. (32)

A= Bl e x = —R/™ osut (33)
W, - W W, - W

o
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Theamplitude A" of the forced oscillation is proportiond to the strength F, of the
driving force, as we might have expected. It is strongly dependent on the angular
frequency w of the driving force; when this frequency equas the angular frequency wp
of free ocillations of the system, A' isinfinitel Thiscritica degpendence of the
amplitude on the angular frequency of the driving forceis caled resonance. Note that A'
isnot arbitrary, and that it isnot determined by initid conditions, unlike the constants A,
B, and C inthe previous andyss.

When w <w,, A" ispodtiveand the forced oscillation isin phase with the driving force;
the two have the same sgn a each ingdant. When w >w,, A’ isnegative, and the two
are ahdf-cycle out of phase; they have opposite Sgns at each ingtant.

In the language of differentia equations, Eq. (33) isaparticular solution of Eq. (32), but
it is not the complete solution. That is obtained by adding to Eq. (33) the genera
solution of the corresponding homogeneous equation, which is given by Eq. (8). Thus
the most generd solution of Eq. (32) is
X = Acosw,t + Bsinwgt + I;o—/mz CoSWt . (39
Wy - W
When aforcing function is present, Egs.(9) are no longer valid. To obtain the reation of
the constants A and B to theinitid conditions X, and Vo, itisessentia to usethe
complete solution, Eq. (34).

Forced Oscillations-- Damped System

When the sinusoidd driving force of Eq. (31) acts on a damped harmonic oscillator the
equation of mation (from SF = ma) is

d2X 2

dx _ . . _ Fo
- kx - ba+Focoswt—mF, or x+29><+w0x—ﬁcosvvt. (35)

Aganwe look for asnusoida solution representing a forced oscillation with angular
frequency w. Because EQ. (35) now contains both first and second derivatives, the
solution will contain both coswt and sn wt, or (aternatively) acosne function with a
phase angle. Hence we try a paricular solution in the form

X = A'cog(wt +j ), (36)
where A" and j are constants to be determined.
When Eq. (36) is substituted into Eq. (35), it isfound to satisfy that equation only when
F,/m 20w
2 2"
\/(Wz _ W02)2 + (2gw)’ w? - w,

The derivation of these results is straightforward but somewhat complicated. We
postpone the derivation of Egs. (37) until page 12.

A= , tanj = (37)
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The denominator inthe A’ expression is often abbreviated as D(w),

_F/m

D(w) = \/(wz - woz)2 +(2gw)’, s0 A' (W) D)

(38)

The dependence of A" and D on w iswritten explicitly as areminder that the
amplitude of the forced oscillation again depends criticaly on the angular frequency w
of the driving force

Resonance

A graph of A" asafunction of thedriving frequency w showsthat A' reachesa
maximum &t acertain value of w. To find this value, we take the derivative of Eq. (37)

with respect to w and set it equd to zero. We find that the maximum vaue of A’
occurs when

W= w2 - 207 . (39)

Asin the undamped case, this peaking of the amplitude a a certain angular frequency is
cdled resonance, and the graph of A’ asafunction of w iscaled the resonance curve
In the light- damping approximation, the peak occurs approximately at w = wo, but in
generd it occurs a afrequency somewhat lessthan w,, asEq. (39) shows. Also, inthe
light-damping case the curve is narrow and sharply pesked, while with greater damping it
is broader and not as high.

The phase of the forced oscillaion relative to the driving force is given by the angle |

in Eq. (37). When w iscloseto zero, j isnearly zero and the two are nearly in phase.
As w increases, | becomes more and more negative. (l.e., the displacement lags
farther and farther behind the force) Whenw =w, | =-p/2, and when w becomes
very large, | approaches - p and the force and displacement are nearly a hdf cycle
(180° or p) out of phase. This behavior may be compared with that of the undamped,
driven oscillator, where the phase changes suddenly from 0 to-p when w = w,.

Light Damping Approximation

When thedamping islight (i.e, g<<w,), thegraphof A'asafunctionof w isshaply
peaked at w,. In this case we can use an approximate but Smpler expression for A'.
We rewrite the first of Egs. (37):

F,/m a F,/m

AI - .
J - w2 2w ) (w o w,)” + (2w

(40)

Then, because the function is gppreciably different from zero only near w = w,, we can
replace w by w, in Eq. (40) everywhere except in the term containing (W - wo). The
result is
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F,/m B F,/2mw,

Al @ .
Jw- W (w, +w,) + (20w, yf(w, - w) + g

(41)

In this goproximation, the maximum value of A' occursexactly a w =w, andis
= 42
2mgw,

Combining thiswith Eq. (41), we can dso express A' as

max

Az P8 (43)
Jw-w,) + g
To describe the sharpness or breadth of the peak, we can find the frequencies at which A’

dropsto ]/ 2 of its pesk vaue asthe frequency w of the driving forceis varied.
Ingpection of Eq. (43) shows that this occurs when

(w - WO)2 = g?, or W= w, £ g. (44)

Thus the "width" of the curve (a the pointswhere A'= A" /+/2)is 2g. A more
general measure of the sharpness of the peak is the fractional width, that is, the ratio of
thewidth (2g) tothe vdueof w at the pesk (that is, w,). We seethat the fractiona
widthis smply 2g/w,. Thisisjust thereciproca of the quantity Q defined by Eq.
(29). Large Q correspondsto light damping and a sharply pesked resonance curve, and
andl Q corresponds to heavy damping and ardlatively flat resonance curve. Thusthe
free-oscillation behavior and the forced- oscillation behavior are closely related.

Initial Conditions

Aswith the undamped, driven oscillator, Eq. (36) does not represent the compl ete
solution of the equation; it isa particular solution corresponding to the non-
homogeneous term representing the driving force. To obtain the complete solution, we
must add to this particular solution the generd solution of the corresponding
homogeneous equation, which is Eq. (14) (for the underdamped case). Thus the most
generd solution of Eq. (35), which includes dl the possible motions of the system, has
the form

x = & $(Acoswgt + Bsinwgt) + A'cos(wt +j ). (45)

In this expression, the constants A and B are determined by theinitia conditions X,
and v,, while A" depends on the frequency w and amplitude F, of the driving force.
Thefirg part decays with time and is often cdled the transient part of the solution. The
second part isindependent of initid conditions, but it perssts aslong as the driving force
ispresent. Itiscdled the steady-state part of the solution.
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Equations (15) are not vaid for forced oscillations. The complete solution given by EQ.
(45) must be used to determine the congtants A and B in the trandent part of the
solutioninterms of theinitid conditions, X, and v,. Theamplitude A" and phase | of
the forced oscillation (or steady-state motion) are determined by the amplitude F, of the
driving force and its angular frequency w, not by theinitid conditions. Thetis, A" and
j donot dependon X, and Vo

The following table summarizes the relationships of the various parts of the generd
solution, for the undamped and underdamped cases.

Particular Solution of Generd Solution of
Complete Equation Complementary Eqution
F,/m : :
X = z—chosvvt + Acosw t + Bsinw t (no damping)
w,° -
F,/m L _
X = cofwt +f) + e ¥ (Acosw,t + Bsinw,t) (underdamped)

St - w2)" + (2gu)”

forced or driven oscillation free oscillation
depends directly on driving force independent of driving force
no arbitrary congtants two arbitrary congtants (A and B)
independent of initid conditions depends on initid conditions
"steady-state” solution (doesn't "trandent” solution (dies out

decay with time) with time when damping

IS present)
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Complex Number Representation

Many cdculations with the harmonic oscillator can be smplified by use of acomplex-
number representation. An exampleisthe derivation of Egs. (37). A draightforward,
though tedious way to derive these reaionsisfirg to expand the expresson in Eqg. (36)
using the cosine sum identity, and then subdtitute this function and its derivaives into Eq,
(35). The sum of cosine terms on the left Sde must equd the cosine term on theright,
and the sum of gne terms on the left Sde must equa zero. Working out these relations
results in two Smultaneous equationsfor A" and tanj that may be solved to obtain
Egs. (37).

A smpler method isto use the relation between sine and cosine functions and the
exponentid function with imaginary argument. (Recdl thet the imaginary unit i is
defined as i = +/-1.) Thisrelation, called Euler's formula, States that

éX = cosx +isinx. (46)

Thatis, € isacomplex quantity with resl part cosx and imaginary pat sin x.
(Well study the basis of thisrelation in greater detail in Section 12.)

Thus Eq. (36) isthe redl part of the complex function A'e'™*1) | and the right side of
Eq. (35) isthered partof (F,/m)eé". Soif wetake

X = A'ei(Wt"'j) (47)
(where A" isareal postive constant) and subgtitute this expression into the equation

X + 20X + Wy2X = % e, (48)

then the red part of thefunction x isasolution of Eq. (35) if Eq. (47) isasolution of
Eq. (48). Subdtituting Eq. (47) and its derivativesinto Eq. (48), wefind

(- w? +2gwi +w,” ) At = F—r:]eiw‘. (49)

We divide out the common factor €' and re- arrange the reault, to obtain
F,/m

Ael = : 50
w, - w? + 2gwi 0
Invert this and expand the exponentid function usng Euler'sformula, Eq. (46):
1 _” 1 . . . . m 2 2 .
— == - =— - +2 : 51
e X (cosj - isinj) 3 (W0 W gW|) (51)
Equate red and imaginary parts of this equation to obtain
1 . m 2 ) 1 . . m
—Cos] = —(w, - w°, —sinj = —(-2gw). 52
§ Ol = o we - w) ASn = £ (-20w) (52)

Squaring each of Egs. (52), adding, and re-arranging gives
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%(coszj +sin?j) = r:_zz[(wz - woz)2 + (2gw)z} and

A= Fu/m , (53)
Jor—w.f +iaomy
which isthefirg of Egs. (37). Dividing the second of Egs. (52) by thefirst gives
. 20w
tanj = —o—, (54
W< - W,

which isthe second of Egs. (37).

We seethat theangle | represents the phase of the forced oscillation relative to the
phase of the driving force. The tangent of thisangleisthe retio of imaginary to red part
of the solution. This reationship recurs many timesin andyds of vibrations, ac circuits,
optics, and other areas of physics.

We dress again that the use of complex numbersis not necessary; Egs. (37) can be
derived without use of complex quantities. But usng complex quantities often smplifies
greatly the phase and magnitude relationships among snusoiddly varying quantities.
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