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Periodic Motion 
 
Any motion that repeats itself over and over with a definite cycle is said to be periodic.  
The rate of repetition is described by the period  (T),  the frequency  (f),  or the angular 
frequency  (ω), defined as follows: 
 
 T  =  period  =  amount of time for one cycle; 

 f  =  frequency  =  number of cycles per unit time;     f T= 1  
 ω  =  angular frequency  =  2π f . 
 
The simplest example of periodic motion in a mechanical system is the harmonic 
oscillator; its motion is called  simple harmonic motion  (SHM).  The defining 
characteristics of  SHM  are a stable equilibrium position and a restoring force that is 
directly proportional to the displacement from that position.   
 
In many systems the restoring force is approximately proportional to the displacement 
from equilibrium; the resulting motion is then approximately simple harmonic.  Thus 
SHM is useful as a model that describes the behavior of such systems approximately but 
not exactly.  (But note the caution on page 4-5,  concerning exceptional cases where  F  is  
not  proportional to  x, even for very small displacements.) 
 
 
Undamped Harmonic Motion 
 
In its simplest form the harmonic oscillator consists of a mass  m  that moves along a 
straight line with coordinate  x,  under the action of a force  F  that acts along this line and 
has magnitude proportional to  x, with proportionality constant  k.  (For example, a spring 
that obeys Hooke's law)  At  x = 0,  F = 0,  so x = 0  is a position of stable equilibrium.  
The force can be represented analytically as  F = −kx.  The negative sign shows that the 
direction of  F  is always toward the point  x = 0, opposite to the displacement.  The 
constant  k  is called the force constant or spring constant for the system.   
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When  F =  −kx,  Newton's second law  (ΣF = ma)  gives 

 − = = −k x m
d x
dt

d x
dt
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In these equations (called differential equations because they contain derivatives),  x  
must be some function of  t  such that when this function and its second derivative are 
substituted into either equation, the left and right sides are really equal.  Two possibilities 
are 

 x
k
m

t x
k
m

t= =sin cos .and   (2) 

These functions are said to be solutions of the differential equation.  You should verify 
this by substitution. 
 
Any differential equation that contains  x  and its derivatives only to the first power  
(called a linear differential equation) has the property that every linear combination of 
solutions is also a solution.  Thus a more general solution is  

 x A
k
m

t B
k
m

t= +cos sin ,   (3) 

where  A  and  B  can be any constants.  It can be shown that this is the most general 
solution of the differential equation, and therefore represents all the possible motions of 
the system.  The general solution may also be written in the alternative form 

 x C
k
m

t= +
F
HG

I
KJcos ϕ .  (4) 

We invite you to prove the equivalence of  Eqs. (3) and (4).  Use the identity for the 
cosine of the sum of two angles, to show that the forms are identical if 

 A C B C C A B
B
A

= = − + =
−F
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I
KJcos , sin , , arctan .ϕ ϕ ϕor = 2 2  (5) 

Each of these functions goes through one cycle when the argument  
k
m

t   goes from 

zero to 2π ,  i.e., in a time  T  (the period of the motion) such that    
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m

T T
m
k

= =2 2π πor .  (6) 

This result shows that greater mass  m  means more time for one period, while greater 
force constant  k  means less time for one period as we might have predicted. 
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From the definitions of  f  and  ω,  we also find 
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Anticipating later developments, we will use the notation  ωo = k m   (rather than  ω)   
for angular frequency  In terms of  ωo,  the possible motions can be written as     

 x A t B t x C t= + = +cos sin or cos ( )o o oω ω ω ϕ . (8) 

The constants  A  and  B,  or  C  and  ϕ,  are determined by the initial conditions of the 
system, i.e., the position  xo  and velocity  vo  at the initial time  t = 0.  Specifically, 

 A x B
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C x
v v
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You should derive these relations, to verify the equivalence of the two forms of Eq. (8) 
 
 
Damped Harmonic Motion 
 
Damping is the presence of an additional force, frictional and dissipative in nature, that 
causes the oscillations of the system to die out.  The motion is then not strictly periodic; 
each cycle has somewhat smaller amplitude than the preceding one.  When the frequency 
remains constant as the amplitude decreases, the motion is said to be quasi-periodic. 
 
The simplest case to treat analytically is a viscous friction force that is proportional to the 
speed   v x= &   of the mass:   F =  −bv, where  b  is a constant that describes the strength 
of the damping force.  (The negative sign shows that  F  always opposes the motion.)  
The Newton’s second law equation  (ΣF = ma)  then becomes 

 − − = + + =kx b
dx
dt

m
d x
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Using the abbreviation  γ = b
m2

  along with  ωo
2 = k

m
    and the abbreviations 

 
dx
dt

x
d x

dt
x= =& &&and

2

2   (a notation introduced by Newton), we can write this 

differential equation compactly as 

 && & .x x x+ + =2 02γ ωo   (11) 

Solution of Equation (11) is discussed in detail in Stewart and in Edwards and Penney.  
We substitute a trial solution in the form  x e pt= .  This is a solution of Eq. (11) if  p 
satisfies the characteristic equation  p p2 22 0+ + =γ ωo   This equation has two unequal 
real roots if  γ ω> o ,  two complex roots if  γ  <  ωo,  and two equal real roots if  γ = ωo.  
We'll discuss these three cases separately. 
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Overdamping 

In the first case  (γ > ωo),  we introduce the abbreviation  γ γ ωd o= −2 2 ;   then the 
most general solution is 

 x Ae Be e Ae Bet t t t t= + = +− + − − − −( ) ( ) ,γ γ γ γ γ γ γd d d dc h    (12) 

where  A  and  B  are constants.  This solution can be verified by direct substitution using 
Maple.  Because  γd  is always less than  γ,  both terms in Eq. (12)  are always decaying 
exponentials, with no oscillation.  When  γ  is greater than  ωo, the system is said to be 
overdamped.  If the initial conditions (at time  t = 0)  are xo  and  vo, then  

 A
x v

B
x v= − − + = + +( )

,
( )

.
γ γ

γ
γ γ

γ
d o o

d

d o o

d2 2
 (13) 

Underdamping 

In the case  γ < ωo  we define  ω ω γd o= −2 2 ;   then the most general solution is 

 x e A t B tt= +−γ ω ωcos sin ,d db g   (14) 

where A  and  B  are constants.  This solution can be verified by direct substitution using 
Maple.  It represents a decaying oscillation with an angular frequency  ωd  that is less 
than  ωo,  with exponentially decaying amplitude.  Such a system is said to be 
underdamped,  and the motion is quasi-periodic.  In terms of the initial  conditions  xo  
and  vo  at time  t = 0,   A  and  B  are given by  

 A x B
v x v x= = +

−
= +

o
o o

o

o o

d
, .

γ

ω γ

γ
ω2 2

 (15) 

Note that if  γ = 0, these expressions reduce to those for the undamped case (Eqs. (9)), 
and also that in this case  ωd = ωo. 
 
 
Critical Damping 
 
A special case occurs  when  the damping is just large enough so that  γ = ωo.  Then the 
characteristic equation has a double root, and the general solution is 

 x A Bt e t= + −( ) .γ   (16) 

The constants  A  and  B  are again determined by the initial conditions  xo  and  vo: 

 A x B x v= = +o o o, .γ   (17) 

This condition is called critical damping.  There is no oscillation, but the approach to 
equilibrium is faster than with overdamping. 
 
The reader is urged to verify the solutions given by Eqs. (12), (14), and (16), and to 
derive the initial-condition relations given by Eqs. (13), (15), and (17). 
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Energy Relations for Undamped Oscillator 
 
The kinetic energy  K  and potential energy  V  for the harmonic oscillator are given by  

 K mv mx V kx= = =1
2

2 1
2

2 1
2

2& , .   (18) 

For the undamped oscillator, the force is conservative, and the total energy  E  = K + V  
(kinetic plus potential) is constant.  To show this, we calculate the time derivative of E: 

 
dE
dt

d
dt

K V mxx k xx x mx kx= + = + = +b g & && & & ( && ).  (19) 

Because of Eq. (1),   mx kx&& ,+ = 0    so   dE/dt = 0   and the total energy  E   is constant. 

 E mx kx= + =1
2

2 1
2

2&   constant.  (20) 

If we plot a graph with  x  on the horizontal axis and  &x v=  on the vertical axis,  Eq. (20) 
is the equation of an ellipse.  The two-dimensional space of this graph is called a  phase 
space,  and the plot is called a  phase plot.  Each point in the  x-v  plane represents an 
instantaneous state of the particle (position and velocity).  As the motion progresses, the 
representative point traces out a curve called the phase trajectory in this plane.  For 
undamped SHM, the phase trajectory is an ellipse in the  x−v  plane. 
 
If the motion of the system is described by Eq. (8), then it can be shown that the total 
energy is given by 

 E k A B kC= + =1
2

2 2 1
2

2e j .   (21) 

 
Energy Relations and  Q  for Damped Oscillator 
 
When a damping force  F = −bv  is present, the total energy is no longer constant.  The 
rate of change of total energy is still given by Eq. (19), but it is not zero.  Rewriting  
Eq. (10) as    mx k x bx&& &+ = −   and substituting into Eq. (19),  we find 

 
dE
dt

bx bx x bx= − = − = −& ( &) & &2 2   (22) 

This has a simple physical interpretation; when a force  F  acts on a body moving with 
velocity v  in  the direction of the force, the power (rate of doing work) is  Fv.  Here the 
damping force is  −bx& ,  so Eq. (22) represents the (negative) rate at which the damping 
force does work on the system, equal to the rate of change of its total energy.  Note that 
dE/dt is never positive; the energy continuously decreases. 
 
It is of interest to compare the energy loss in one cycle,  ∆Ε,  for the underdamped 
oscillator, to the energy  E  at the beginning of that cycle.  We define a quantity  Q: 

 Q
E
E

= 2π
∆

.    (23) 
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Larger values of  Q  correspond to weaker damping, smaller  ∆E,  and more slowly 
decaying oscillations, and conversely.  (In remote antiquity, when this analysis was 
applied to L-C resonant circuits in radio equipment,  Q  was an abbreviation for  quality 
factor.  It is a measure of the sharpness of a resonance peak in the circuit.  More about 
resonance later.) 
 
Light Damping Approximation 
 
We can derive a  relation of  Q  to the system parameters  ωo  and  γ.  We'll limit our 
discussion to systems with light damping.  In such systems, the maximum displacements 
from equilibrium change relatively little from one cycle to the next and the oscillations 
die out gradually over many cycles.  Then the exponential factor in Eq. (14) changes by 
only a small fraction of its value during one cycle.  The period of the damped oscillation 
is  2π/ωd,  so the condition for light damping is 

 
2

1
π γ
ω

γ ω γ ω ω ω
d

d o d oor << and so<< << ≅, , .  (24) 

In the light-damping approximation,  ωd  is very nearly equal to the undamped angular 
frequency  ωo.  For such a system we expect that  ∆E will be much smaller than  E, so the 
quantity  Q  defined by  Eq. (23)  will be much larger than unity.  The following 
discussion will confirm this expectation.     
 
Suppose the motion is given by  x Ae tt= −γ ωcos .d   Then the maxima and minima of  x  
occur approximately when  ωdt  = nπ ,  where n  is an integer  At these points, the body is 
at rest and the energy is entirely potential.  In particular, at time  t = 0, the total energy is 

E kAo = 1
2

2,   and at the end of one period, when  ωdt  = 2π   and  t  =2π /ωd,   

 E k Ae kA e1
1
2

2 2
1
2

2 4= =− −( / ) .πγ ω π γ ωd dc h   (25) 

The fractional change of energy during one cycle is then (apart from sign) 

 
∆E
E

E E
E

E
E

e= − = − = − −o

o o

d1 1 41 1 πγ ω/ .  (26) 

In the light damping approximation,  γ  is much smaller than  ωd, so we can expand the 
exponential function in  Eq. (26)  in a Taylor series, keeping only the first two terms: 

 e− ≅ −4 1
4πγ ω πγ
ω

/ ,d

d
  (27) 

and Eq. (26) becomes approximately 

 
∆E
E

≅ ≅4 4πγ
ω

πγ
ωd o

.   (28) 

Finally, we substitute this result into the definition of  Q,   Eq. (23): 

 Q
E
E

= =
F
HG

I
KJ =2 2

4 2
π π

ω
π γ

ω
γ∆

o o .   (29) 
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We also note that  ∆E 2π   represents the energy loss per radian (i.e., per 1/2π  cycles).  
Thus an alternative definition of  Q  is  

 Q
E

E
=

∆ per radian

.  

The above analysis shows that in the light-damping approximation, if the total energy  E  
is measured at corresponding points on successive cycles, it decays exponentially 
according to 

 E E e t= −
o

2 γ ,   (30) 

where  Eo  is the energy at the initial time  t = 0.  Equation  (29)  also shows that  a lightly 
damped system, for which  γ << ωo,  has a value of  Q  much larger than unity. 
 
The rate of energy loss varies during each cycle; it is greatest when  v  is greatest  (i.e., at  
x = 0),  and zero at points of maximum displacement (i.e., when  v = 0).  The phase 
trajectory for underdamped oscillations is not an ellipse but a spiral that curves in toward 
the origin of the  x-v plane. 
 
Forced Oscillations -- Undamped System 
 
A situation of great practical interest occurs when an additional time-dependent force  
F(t)  (which we will call a driving force) is applied to a harmonic oscillator.  An 
important special case is a driving force that varies sinusoidally with time, which we may 
represent as 

 F t F t( ) cos .= o ω   (31) 

In this expression,  Fo is a constant that characterizes the strength of the driving force, 
and  ω  is its angular frequency.  Note that in general  ω  is not equal to either  ωo  or  ωd  
in the preceding discussion. 
 
The additional force enables the system to undergo a motion called  forced or driven 
oscillation that would not be possible without it.  In particular, the system can move with 
an undamped sinusoidal motion having the same angular frequency as the driving force.   
 
If there is a driving force given by Eq. (31), and no damping force, the equation of 
motion  (from  ΣF = ma)  is 

 − + = + =kx F t m
d x
dt

x x
F
m

to o
oorcos , && cos .ω ω ω

2

2
2  (32) 

It is natural to look for a solution to this equation that has the same frequency as the 
driving force.  Therefore we try a solution in the form  x = A' cos ωt,  where  A'  is a 
constant to be determined.  Substituting this into Eq. (32), we find that it is a solution 
only if  

 A
F m

x
F m

t' ; .=
−

=
−

o

o

o

o

then cos
ω ω ω ω

ω2 2 2 2
 (33) 
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The amplitude  A'  of the forced oscillation is proportional to the strength  Fo  of the 
driving force, as we might have expected.  It is strongly dependent on the angular 
frequency  ω  of the driving force; when this frequency equals the angular frequency  ωo  
of free oscillations of the system,  A'  is infinite!  This critical dependence of the 
amplitude on the angular frequency of the driving force is called resonance.  Note that  A'  
is not arbitrary, and that it is not determined by initial conditions, unlike the constants  A,  
B,  and C  in the previous analysis.  
 
When  ω < ωo,  A'  is positive and the forced oscillation is in phase with the driving force;  
the two have the same sign at each instant.  When  ω > ωo,  A'  is negative, and the two 
are a half-cycle out of phase; they have opposite signs at each instant. 
 
In the language of differential equations, Eq. (33) is a particular solution of Eq. (32), but 
it is not the complete solution.  That is obtained by adding to Eq. (33)  the general 
solution of the corresponding homogeneous equation, which is given by Eq. (8).  Thus 
the most general solution of Eq. (32) is 

 x A t B t
F m

t= + +
−

cos sin cosω ω
ω ω

ωo o
o

o
2 2 . (34) 

When a forcing function is present, Eqs.(9) are no longer valid.  To obtain the relation of 
the constants  A  and  B  to the initial conditions  xo  and  vo,  it is essential to use the 
complete solution, Eq. (34). 
 
Forced Oscillations -- Damped System 
 
When the sinusoidal driving force of Eq. (31) acts on a damped harmonic oscillator the 
equation of motion (from  ΣF = ma)  is 

 − − + = + + =kx b
dx
dt

F t m
d x

dt
x x x

F
m to o

oorcos , && & cos .ω γ ω ω
2

2
22  (35) 

Again we look for a sinusoidal solution representing a forced oscillation with angular 
frequency  ω.  Because Eq. (35)  now contains both first and second derivatives, the 
solution will contain both  cos ωt  and  sin ωt, or (alternatively)  a cosine function with a 
phase angle.  Hence we try a paricular solution in the form   

 x A t= +' cos( )ω ϕ ,  (36) 

where  A'  and  ϕ  are constants to be determined. 
 
When Eq. (36) is substituted into Eq. (35), it is found to satisfy that equation only when 

 A
F m

' , tan .=
− +

=
−

o

o
oω ω γω

ϕ γω
ω ω2 2 2 2

2 2

2

2

d i b g
 (37) 

The derivation of these results is straightforward but somewhat complicated.  We 
postpone the derivation of Eqs. (37) until page 12. 
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The denominator in the  A'  expression is often abbreviated as D(ω), 
 

 D A
F m
D

ω ω ω γ ω ω
ω

b g d i b g= − + =2 2 2 22o
oso, ' ( )
( )

.  (38) 

 
The dependence of  A'  and  D  on  ω  is written explicitly as a reminder that the 
amplitude of the forced oscillation again depends critically on the angular frequency  ω  
of the driving force 
 
Resonance 
 
A graph of  A'  as a function of the driving frequency ω  shows that  A'  reaches a 
maximum at a certain value of  ω.  To find this value, we take the derivative of  Eq. (37)  
with respect to  ω  and set it equal to zero.  We find that the maximum value of  A'  
occurs when 

 ω ω γ= −o
2 22 .  (39) 

As in the undamped case, this peaking of the amplitude at a certain angular frequency is 
called resonance, and the graph of  A'  as a function of  ω  is called the resonance curve. 
In the light-damping approximation, the peak occurs approximately at  ω = ωo, but in 
general it occurs at a frequency somewhat less than  ωo,  as Eq. (39) shows.   Also, in the 
light-damping case the curve is narrow and sharply peaked, while with greater damping it 
is broader and not as high. 
 
The phase of the forced oscillation relative to the driving force is given by the angle  ϕ  
in Eq. (37).  When  ω  is close to zero,  ϕ  is nearly zero and the two are nearly in phase.  
As  ω  increases,  ϕ  becomes more and more negative.  (I.e., the displacement lags 
farther and farther behind the force.)  When ω = ωo,   ϕ = −π/2,  and when  ω  becomes 
very large,  ϕ  approaches  −π  and the force and displacement are nearly a half cycle 
(180o  or  π) out of phase .  This behavior may be compared with that of the undamped, 
driven oscillator, where the phase changes suddenly from  0  to −π   when  ω = ωο. 
 
Light Damping Approximation 
 
When the damping is light  (i.e.,  γ << ωo), the graph of  A' as a function of  ω  is sharply 
peaked at  ωo.  In this case we can use an approximate but simpler expression for  A'. 
We rewrite the first of Eqs. (37): 
 

 A
F m F m

' .=
− +

=
− + +

o

o

o

o oω ω γω ω ω ω ω γ ω2 2 2 2 2 2 2
2 2d i b g b g b g b g

 (40) 

 
Then, because the function is appreciably different from zero only near  ω = ωo, we can 
replace  ω  by  ωo  in Eq. (40) everywhere except in the term containing  (ω − ωo).  The 
result is 
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 A
F m F m

' .≅
− + +

=
− +

o

o o o o

o o

oω ω ω ω γω

ω

ω ω γb g b g b g b g2 2 2 2 22

2
 (41) 

 
In this approximation, the maximum value of  A'  occurs exactly at  ω = ωo  and is 

 A
F

m
' .max

o

o

=
2 γω

  (42) 

Combining this with Eq. (41), we can also express  A'  as 

 A
A

'
'

.=
− +

max

o

γ

ω ω γb g2 2
  (43) 

To describe the sharpness or breadth of the peak, we can find the frequencies at which  A'  
drops to  1 2  of its peak value as the frequency  ω  of the driving force is varied.  
Inspection of Eq. (43) shows that this occurs when   
 

 ω ω γ ω ω γ− = = ±o oorb g2 2 , .  (44) 
 
Thus the "width" of the curve (at the  points where  A' = A'max 2 ) is  2γ.  A more 
general measure of the sharpness of the peak is the fractional width, that is, the ratio of 
the width  (2γ)  to the value of  ω  at the peak (that is,  ωo).  We see that the fractional 
width is  simply  2γ/ωo.  This is just the reciprocal of the quantity  Q  defined by  Eq. 
(29).  Large  Q  corresponds to light damping and a sharply peaked resonance curve, and 
small  Q  corresponds to heavy damping and a relatively flat resonance curve.  Thus the 
free-oscillation behavior and the forced-oscillation behavior are closely related. 
 
Initial Conditions 
 
As with the undamped, driven oscillator,  Eq. (36) does not represent the complete 
solution of the equation; it is a particular solution corresponding to the non-
homogeneous term representing the driving force.  To obtain the complete solution, we 
must add to this particular solution the general solution of the corresponding 
homogeneous equation, which is Eq. (14) (for the underdamped case).  Thus the most 
general solution of Eq. (35), which includes all the possible motions of the system, has 
the form 
 

 x e A t B t A tt= + + +−γ ω ω ω ϕcos sin ' cos( ).d db g  (45) 
 
In this expression, the constants  A  and  B  are determined by the initial conditions  xo  
and  vo,  while  A'  depends on the frequency  ω  and amplitude  Fo  of the driving force.  
The first part decays with time and is often called the transient part of the solution.  The 
second part is independent of initial conditions, but it persists as long as the driving force 
is present.  It is called the steady-state part of the solution. 
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Equations (15) are not valid for forced oscillations.  The complete solution given by Eq. 
(45)  must be used to determine  the constants  A  and  B  in the transient part of the 
solution in terms of  the initial conditions,  xo  and  vo.  The amplitude  A' and phase  ϕ  of 
the forced oscillation (or steady-state motion) are determined  by the amplitude  Fo  of the 
driving force and its angular frequency  ω,   not by the initial conditions.  That is,  A'  and  
ϕ  do not depend on xo  and  vo 
 
The following table summarizes the relationships of the various parts of the general 
solution, for the undamped and underdamped cases. 
 
 
         Particular Solution of                                           General Solution of  
         Complete Equation                                               Complementary Eqution 
 

x
F m

t A t B t

x
F m

t e A t B tt

=
−

+ +

=
− +

+ + +−

o

o
o o

o

o

d d

(no damping)

underdamped)

ω ω
ω ω ω

ω ω γω
ω φ ω ωγ

2 2

2 2 2 2
2

cos cos sin

cos cos sin (
d i b g

b g b g

 
 forced or driven oscillation   free oscillation 
 
 depends directly on driving force       independent of driving force 
 
 no arbitrary constants    two arbitrary constants  (A  and  B) 
 
 independent of initial conditions  depends on initial conditions 
 
 "steady-state" solution (doesn't      "transient" solution  (dies out  
        decay with time)    with time when damping 
        is present)  
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Complex  Number  Representation 
 
Many calculations with the harmonic oscillator can be simplified by use of a complex-
number representation.  An example is the derivation of Eqs. (37).  A straightforward,  
though tedious way to derive these relations is first to expand the expression in Eq. (36) 
using the cosine sum identity, and then substitute this function and its derivatives into Eq. 
(35).  The sum of cosine terms on the left side must equal the cosine term on the right, 
and the sum of sine terms on the left side must equal zero.  Working out these relations 
results in two simultaneous equations for  A'  and  tan ϕ  that may be solved to obtain 
Eqs. (37). 
 
A simpler method is to use the relation between sine and cosine functions and the 
exponential function with imaginary argument.  (Recall that the imaginary unit  i  is 
defined as  i = −1 .)  This relation, called Euler's formula, states that 

 e x i xi x = +cos sin .   (46) 

That is,  eix  is a complex quantity with real part  cos x  and imaginary part  sin x. 
(We'll study the basis of this relation in greater detail in Section 12.) 
 

Thus Eq. (36)  is the real part of the complex function  A ei t' ,( )ω ϕ+   and the right side of 

Eq. (35)  is the real part of  F m ei t
ob g ω .   So if we take   

 x A ei t= +' ( )ω ϕ     (47) 

(where  A'  is a real positive constant) and substitute this expression into the equation 

 && &x x x
F
m

ei t+ + =2 2γ ω ω
o

o ,  (48) 

then the real part of  the function  x  is a solution of  Eq. (35)  if  Eq. (47)  is a solution of  
Eq. (48).  Substituting  Eq. (47)  and its derivatives into Eq. (48), we find 

 − + + =+ω γω ω ω ϕ ω2 22 i A e
F
m

ei t i t
o

od i ' .( )   (49) 

We divide out the common factor  ei tω   and re-arrange the result, to obtain 

 A e
F m

i
i' .ϕ

ω ω γ ω
=

− +
o

o
2 2 2

  (50) 

Invert this and expand the exponential function using Euler's formula, Eq. (46): 

 
1 1

22 2

A
e

A
i

m
F

ii

' '
cos sin− = − = − +ϕ ϕ ϕ ω ω γωb g d i

o
o . (51) 

Equate real and imaginary parts of this equation to obtain 

 
1 1

22 2

A
m
F A

m
F'

cos ,
'
sin .ϕ ω ω ϕ γ ω= − = −

o
o

o

d i b g  (52) 

Squaring each of  Eqs. (52),  adding, and re-arranging gives  
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1

22
2 2

2

2
2 2 2 2

A
m
F'

cos sin ,ϕ ϕ ω ω γ ω+ = − +L
NM

O
QPc h d i b g

o
o          and 

 A
F m

' ,=
− +

o

oω ω γω2 2 2 22d i b g
  (53) 

which is the first of  Eqs. (37).  Dividing the second of  Eqs. (52)  by the first gives 

 tan ,ϕ
γ ω

ω ω
=

−
2

2 2
o

  (54) 

which is the second of  Eqs. (37). 
 
We see that the angle  ϕ  represents the phase of the forced oscillation relative to the 
phase of the driving force.  The tangent of this angle is the ratio of imaginary to real part 
of the solution.  This relationship recurs many times in analysis of vibrations, a-c circuits, 
optics, and other areas of physics. 
 
We stress again that the use of complex numbers is not necessary;  Eqs. (37)  can be 
derived without use of complex quantities.  But using complex quantities often simplifies 
greatly the phase and magnitude relationships among sinusoidally varying quantities.    
 
 
 



5-14  5    The Harmonic Oscillator 

 


