3 Numerical Solutions of Differential Equations Fall 2003

References: Stewart Calculus - Early Transcendentals (4th edition), Sec. 9.2
Edwards and Penney Differential Equations (2nd edition), Sec. 2.4

Note: Inthisdiscusson we revert to the ordinary concept of afunction rather than the
more specidized notion discussed in Section 2.

Suppose y isafunctionof time t, y=1(t), tha stidfiesthe differentia equation

% = F(y,t), where F(y,t) isaknown function.

For many differentid equations the solution y = f(t) cannot be expressed in terms of
familiar functions. A smple example of such adifferentid equation is % = y? +t.

When y = f(t) cannot be expressed in terms of familiar functions, we would like to
develop ascheme for computing an approximate numericd value of 'y for any specified
numerica vaueof t. We could then plot agraph of y asafunction of t, and explore
the properties of the function.

Euler's M ethod

To determine a unique solution, we need a arting point (thevaueof y a someinitid
vauedf t). Lettheinitid vdueof t be t,, andletthevaueof y a thistimebe yo.
Thatis, Yo =f(t,), wherethevaues y, and t, are specified at the beginning. Then we
can get an gpproximate vauefor y a adightly later time, say, t; =t, + Dt, asfollows

During thetimeintervd Dt, the change Dy in y isgiven goproximately by

dy
W@(E)t:tou'

(Thisbecomesexact inthelimitas Dt ® 0.) Let y; bethevaueof y atime t;. then

dy
=y - = Dt
Dy = v,- Y, @[dt)t:to

Also, from the differentia equation, (%jt-t = F(y,.t,), =0

yl @yO + F(yO’tO) [1

Because y, and t, areknown, we can evauate this and get an approximate vaue for y;.
In the above example, whereF (y, t) = y2 +t, weobtan

Vi @Y, + (Yo + 1) Dt.
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Using this gpproximate vaue for y;, we can now repeat this whole process to get the
aoproximate value y, a thedightly later time t; =t; + Dt:

Yo @y, + F(yy,ty) Dt
(We are assuming that the time intervas between successive points are dl equd to Dt.)

In thisway we construct a sequence of solution points (y;, t;). When we connect these
points with line ssgments, the result should be some gpproximation of the curve
representing the actud solution y = f(t). Intuitition suggeststhet thesmdler Dt is, the
more precise our approximation will be.

We can implement this scheme using Maple. In the above example, let y, =0 and
to = 0. It'scustomary in the literature to denote the step Size Dt as h. Then
tn =nh. Suppose h=0.1. If wetake atota of ten steps(so n goesfrom 0 to 9), the

maxdmum vaueof t is 1. For our example, with F(y,t) = y? +t, apossble Maple
schemeis.

restart;

y[0] :=O;

fornfrom0to 9 do

y[n + 1] := y[n] + (y[n]*2 + n*0.1)*0.1;
end do;

(Note the use of square brackets, y[n], to denote the subscripted variable yn.)

To make it easier to experiment with various values of h, and various ranges of
vauesaof t, you may want to use something like

restart;

h:=0.1;, nmax:=9; y[0]:=0;
for nfrom 0 to nmax do

yln + 1] :=y[n] + (y[n}*2 + n*h)*h;
end do;

Or if you want to make atable of y's and the corresponding t's, you can end the fourth
and fifth lineswith colons and add the fallowing line between them. Try it!

print([n*h, y[n]]);

This procedureis cdled Euler's method. Intuitively, the precison should improve if we
decrease the step Size h. Infact, it can be shown that for a given differentid equation,
the cumulative error in the gpproximation a any point is proportiond to h. Hencethisis
cdled afirst-order method; decreasing the sep Sze h by afactor of 1/2 decreasesthe
cumulative error by the same factor.
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Improved Euler M ethod

There are various ways of refining this process to obtain better precision with only

modest increase in computation. One of the Implest refinementsis the following.

Instead of computing yn+1 by evauaing F(y,t) at thepoint [yn, tn], wefirst usethisto
get an estimateof yn+1, Whichwemay cdl Yest. We then use thisto get an goproximate
vaueof F(y, t) & time t,+ h, and then compute yn+1 by usng theaverage of F(yn,tn)
and F(Ves, th+1). Geometricdly, this amounts to computing the next point on the curve
not by using the dope a the previous point, but by first estimating the dope at the next
point, and then computing the next point by using the average dope in the interva.

More explicitly

yest = yn + F(yn’tn)h’

(%jave ) %[F(yn’tn) + F(yestatn+1)]’

and findly
1
Yn+1 = Yn +§[F(yn’tn) + F(Yestitn+1)] h.

Using the average dope of y(t) in each interva instead of the dope a the beginning
improves the precision of the method gresetly. It can be shown that in this scheme the
accumulated error in the computation, for any given equation, is proportiond to h?, and
thisis cdled asecond-order method. Changing h by afactor of 1/2 changesthe
cumulative error by 1/4.

Runga-Cutta M ethod

The Runga- Cutta method is a further elaboration of the basic idea of the improved Euler
method. It usesedtimatesof y and dy/dt at severd pointsin each interva during the
computation of yn+1 from y,. For agiven step Sze and range of vaues of t, it requires
fiveto 10 times as many computations as the Euler method, but the cumulative error can
be shown to be proportional to h*. Decreasing h by 1/2 decreases the cumulative error
by 1/16. Thismethod isvery widdy used. One of the methods Maple usesisaverson
of the "fourth-order Runga- Cutta' method. Maple can aso vary the step size, using

larger stepsin regions where the function is changing dowly, hence economizing on
computations.
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Higher Order Equations

All the methods described above can be adapted to numerica solution of equations
containing higher-order derivatives. In mechanics, where Newton's second law contains

2
a second derivative, we often encounter equations containing Y, % , and % .

2
For such cases, let v = Z—i/; then % = 2—\; This process convertsthe single

second-order equation for 'y into two coupled firg-order equationsfor y and v.

Smilarly, suppose there are two variables, say x and y, and two coupled second-order
equations. (A familiar example is atrgectory problem with air resstance, where x and
y are the coordinates of the particle, both functionsof t.) We can define

:d_X and vy =—
dt dt

This converts the pair of second-order equationsinto a set of four coupled first-order
equations, which can be solved with an eaboration of any of the methods described
above. Maple does this smply and painlesdy.



