
3 Numerical Solutions of Differential Equations Fall 2003

References: Stewart Calculus - Early Transcendentals (4th edition), Sec. 9.2
 Edwards and Penney Differential Equations (2nd edition), Sec. 2.4

Note: In this discussion we revert to the ordinary concept of a function rather than the
more specialized notion discussed in Section 2.

Suppose y is a function of time t, y = f(t), that satisfies the differential equation

dy
dt

F y t= (,), where F(y,t) is a known function.

For many differential equations the solution y = f(t) cannot be expressed in terms of

familiar functions. A simple example of such a differential equation is
dy
dt

y t= +2 .

When y = f(t) cannot be expressed in terms of familiar functions, we would like to
develop a scheme for computing an approximate numerical value of y for any specified
numerical value of t. We could then plot a graph of y as a function of t, and explore
the properties of the function.

Euler's Method

To determine a unique solution, we need a starting point (the value of y at some initial
value of t). Let the initial value of t be to, and let the value of y at this time be yo.
That is, yo = f(to), where the values yo and to are specified at the beginning. Then we
can get an approximate value for y at a slightly later time, say, t1 = to + ∆t, as follows:

During the time interval ∆t, the change ∆y in y is given approximately by

 ∆ ∆y
dy
dt t t

t≅ F
HG

I
KJ = o

.

(This becomes exact in the limit as ∆t → 0.) Let y1 be the value of y at time t1; then

 ∆ ∆y y y
dy
dt t t

t= − ≅ F
HG

I
KJ =1 o

o

.

Also, from the differential equation,
dy
dt t t

F y tF
HG

I
KJ =

=
o

o o(,), so

 y y F y t t1 o o o≅ + (,) .∆

Because yo and to are known, we can evaluate this and get an approximate value for y1.

In the above example, where F y t y t(,) ,= +2 we obtain

 y y y t t1
2≅ + +o o o() .∆

3-2 Numerical Solutions of Differential Equations

Using this approximate value for y1, we can now repeat this whole process to get the
approximate value y2 at the slightly later time t2 = t1 + ∆t:

 y y F y t t2 1 1 1≅ + (,) .∆

(We are assuming that the time intervals between successive points are all equal to ∆t.)

In this way we construct a sequence of solution points (yi, ti). When we connect these
points with line segments, the result should be some approximation of the curve
representing the actual solution y = f(t). Intuitition suggests that the smaller ∆t is, the
more precise our approximation will be.

We can implement this scheme using Maple. In the above example, let yo = 0 and
to = 0. It's customary in the literature to denote the step size ∆t as h. Then
tn = nh. Suppose h = 0.1. If we take a total of ten steps (so n goes from 0 to 9), the

maximum value of t is 1. For our example, with F y t y t(,) ,= +2 a possible Maple
scheme is:

 restart;
 y[0] := 0;
 for n from 0 to 9 do
 y[n + 1] := y[n] + (y[n]^2 + n*0.1)*0.1;
 end do;

(Note the use of square brackets, y[n], to denote the subscripted variable yn.)

To make it easier to experiment with various values of h, and various ranges of
values of t, you may want to use something like

 restart;
 h := 0.1; nmax := 9; y[0] := 0;
 for n from 0 to nmax do
 y[n + 1] := y[n] + (y[n]^2 + n*h)*h;
 end do;

Or if you want to make a table of y's and the corresponding t's, you can end the fourth
and fifth lines with colons and add the following line between them. Try it!

 print([n*h, y[n]]) ;

This procedure is called Euler's method. Intuitively, the precision should improve if we
decrease the step size h. In fact, it can be shown that for a given differential equation,
the cumulative error in the approximation at any point is proportional to h. Hence this is
called a first-order method; decreasing the step size h by a factor of 1/2 decreases the
cumulative error by the same factor.

3 Numerical Solutions of Differential Equations 3-3

Improved Euler Method

There are various ways of refining this process to obtain better precision with only
modest increase in computation. One of the simplest refinements is the following.
Instead of computing yn+1 by evaluating F(y, t) at the point [yn, tn], we first use this to
get an estimate of yn+1, which we may call yest. We then use this to get an approximate
value of F(y, t) at time tn + h, and then compute yn+1 by using the average of F(yn,tn)
and F(yest, tn+1). Geometrically, this amounts to computing the next point on the curve
not by using the slope at the previous point, but by first estimating the slope at the next
point, and then computing the next point by using the average slope in the interval.

More explicitly

y y F y t h

dy
dt

F y t F y t

n n n

n n n

est

ave
est

= +

F
HG

I
KJ = + +

(,) ,

(,) (,) ,
1
2 1

and finally

 y y F y t F y t hn n n n n+ += + +1 1
1
2

(,) (,) .est

Using the average slope of y(t) in each interval instead of the slope at the beginning
improves the precision of the method greatly. It can be shown that in this scheme the
accumulated error in the computation, for any given equation, is proportional to h2, and
this is called a second-order method. Changing h by a factor of 1/2 changes the
cumulative error by 1/4.

Runga-Cutta Method

The Runga-Cutta method is a further elaboration of the basic idea of the improved Euler
method. It uses estimates of y and dy/dt at several points in each interval during the
computation of yn+1 from yn. For a given step size and range of values of t, it requires
five to 10 times as many computations as the Euler method, but the cumulative error can
be shown to be proportional to h4. Decreasing h by 1/2 decreases the cumulative error
by 1/16. This method is very widely used. One of the methods Maple uses is a version
of the "fourth-order Runga-Cutta" method. Maple can also vary the step size, using
larger steps in regions where the function is changing slowly, hence economizing on
computations.

3-4 Numerical Solutions of Differential Equations

Higher Order Equations

All the methods described above can be adapted to numerical solution of equations
containing higher-order derivatives. In mechanics, where Newton's second law contains

a second derivative, we often encounter equations containing y
dy
dt

d y

dt
, , .and

2

2

For such cases, let v
dy
dt

d y

dt

dv
dt

= =; .then
2

2 This process converts the single

second-order equation for y into two coupled first-order equations for y and v.

Similarly, suppose there are two variables, say x and y, and two coupled second-order
equations. (A familiar example is a trajectory problem with air resistance, where x and
y are the coordinates of the particle, both functions of t.) We can define

 vx
dx
dt

vy
dy
dt

= =and .

This converts the pair of second-order equations into a set of four coupled first-order
equations, which can be solved with an elaboration of any of the methods described
above. Maple does this simply and painlessly.

