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Introduction 
 
To introduce the concepts of eigenvalues and eigenvectors, we consider first a three-
dimensional space with a Cartesian coordinate system.  Consider a vector from the origin  
O  to a point  P;  call this vector  a.  The components of  a  are  (a1, a2, a3).  Alternatively, 
we could say that point  P  has coordinates  (a1, a2, a3). 
 
We can apply a linear transformation to vector  a  to obtain another vector  z.  For any 
linear transformation, each component of  z  is some linear combination of the 
components of  a.  This relationship can be expressed as 
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This can be expressed more compactly by use of matrix language.  We define: 
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or simply      z  =  S a.  (4) 
 
In general, the direction of vector  z  is different from that of  a.  But there may be special 
cases where  z  has the same direction as  a.  For example, suppose the transformation   
S  represents a rotation of vector  a  about some fixed axis.  If the direction of  a  happens 
to coincide with this axis, then  a  is not changed by this transformation, and  z  =  a. 
 
More generally, if  z  has the same direction (but not necessarily the same magnitude) as  
a,  then  z  must be a scalar multiple of  a.  That is,  z = λa,  where  λ  is a scalar.  In that 
case, 
 
 Sa = λa,    (5) 
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In this case, the result of the transformation  S  applied to the vector  a  is another vector 
having the same direction as  a.  A vector  a  for which  Eqs. (5) and (6)  are valid  is 
called an eigenvector of the transformation  S,  and the scalar  λ  is the corresponding  
eigenvalue. 
 
Finding  Eigenvectors  
 
Several questions immediately arise: 
 
(1) How do we know that eigenvectors exist, for any given transformation  S? 

(2) If eigenvectors (and their corresponding eigenvalues) do exist, how can we find 
 them? 

(3) Can there be more than one eigenvector for a given transformation  S?  If so, how 
 are the different eigenvectors and eigenvalues related? 
 
We'll now try to answer these questions.  First, Eq. (6) can be combined with Eq. (3) and 
re-arranged as follows: 
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Equating corresponding elements in Eq. (7) and re-arranging, we obtain the set of three 
scalar equations: 
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If an eigenvector  a  exists, its components  (a1, a2, a3)  and its eigenvalue  λ  must satisfy 
Eqs. (8).  This is a set of three simultaneous, linear, homogeneous equations.  (I.e., every 
term contains an  a  to the first power, and there are no terms that do not contain any of  
a1, a2, or a3.) 
 
As was mentioned in  Section 9,  page 9-5,  such a set of equations always has the trivial 
solution  a1 = a2 = a3 = 0.  A fundamental theorem of linear algebra states that non-trivial 
solutions of Eqs. (8) exist if, and only if, the determinant of the system is zero.  That is, 
the necessary and sufficient condition for the existence of non-trivial solutions is 
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For any given transformation  S,  this is a third-degree algebraic equation for  λ.  It has 
three roots, some of which may be complex.  For each of the three values of  λ,  Eqs. (8)  
are a set of three simultaneous equations for the components  (a1, a2, a3)  of the 
corresponding eigenvector  a,  with a different set of components for each value of  λ. 
 
Note that the components of each eigenvector are not completely determined by Eqs. (8) 
because the equations are homogeneous.  For any given  λ, if  (a1, a2, a3)  is one solution, 
then any scalar multiple, such as  (2a1, 2a2, 2a3),  is also a solution.  So for each  λ,  a 
solution of Eqs. (8) gives the direction of the corresponding eigenvector but not its 
magnitude.  Thus when we solve these equations, we are at liberty to choose a value of 
one component (say  a1)  arbitrarily, and then use Eqs. (8) to determine  a2  and  a3  as 
multiples of  a1, 
 
Let the three eigenvalues be  λ1,  λ2,  and  λ3,  and let the corresponding eigenvectors be  
a,  b,  and  c.  Then 
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These may be combined into a single matrix equation.  We form a square matrix  A  
whose columns are the eigenvectors, and a diagonal matrix  ΛΛ   whose diagonal elements 
are the eigenvalues:  That is,  
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From the first of Eqs. (10),  the first column of the product  SA  is equal to    λ1
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This is also equal to the first column of the product  AΛΛ .  Similarly, the other Eqs. (10) 
show that each of the other columns of SA  is equal to the corresponding column of AΛΛ .  
So all three of Eqs. (10)  can be expressed compactly as  
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 SA = AΛΛ .    (13) 
 
Now something remarkable happens.  Assuming the matrix  A  has an inverse  A−1  
(which we won't prove), we multiply both sides of Eq. (13)  on the left by  A−1.  The 
result is  
 
 A−1SA  =  A−1AΛ Λ  =  ΛΛ.  (14) 
 
The operation  A−1SA  has transformed the matrix  S  into the diagonal matrix  ΛΛ . 
 
 
Normalization and Orthogonality 
 
Because Eqs. (8)  determine only the ratios of the components of each eigenvector, the 
magnitudes of the eigenvectors are arbitrary.  It is often useful to multiply all components 
of an eigenvector by a scalar factor such that its magnitude is unity.  Such a vector is said 
to be normalized.  An eigenvector  a  is normalized if  
 
 a aT or= + + =1 11

2
2

2
3

2, ,a a a  (15) 
 
and similarly for  b  and  c. 
 
If  S  is a symmetric matrix  (i.e.,  ST  = S),  and if  λ1,  λ2,  and  λ3  are all different, then it 
can be shown that the eigenvectors are mutually orthogonal (perpendicular).  That is, in 
this case the scalar product of any two different eigenvectors is zero: 
 
 aTb = aTc = bTc = 0.  (16) 
 
If two or more eigenvalues are equal, the corresponding eigenvectors are not necessarily 
orthogonal, but in that case it is always possible to choose linear combinations that are 
orthogonal.  If in addition the eigenvectors are normalized, they are said to form an 
orthonormal basis in the space. 
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Generalizations 
 
n  dimensions:  The above discussion has introduced basic concepts with reference to a 
space with three dimensions.  But the restriction to three dimensions was not used at all 
in the development.  Therefore these same concepts are valid in a space with any number 
of dimensions.  In a space with  n  dimensions,  the transformation  S  is  an  n  by  n  
matrix,  there are  n  eigenvalues, and each corresponding eigenvector is a matrix with 
one column and  n  rows. 
 
complex  eigenvalues:  Some of the eigenvalues may be complex numbers, even if all 
the elements of  S  are real.  In that case the components of the eigenvectors are in 
general also complex, and some of the definitions need to be generalized.  We generalize 
the definition of the scalar product of two vectors  a  and  b  to be  a+b,  that is, the 
adjoint of  a  (denoted by  a+)  multiplied by  b.  (The adjoint of a matrix, also called the 
Hermitean conjugate, is obtained by transposing rows and columns and taking the 
complex conjugate of each element.)  In general, a+b  is complex, but  a+a  is always real 
and nonnegative.  (Can you prove this?)  Also,  a+b  is the complex conjugate of  b+a.   
The normalization condition for eigenvectors becomes 
 
 a a b b+ += = =L 1.  (17) 
 
Hermitean  matrices:  A matrix that is equal to its adjoint is called a Hermitean matrix.  
(I.e.,  S  is Hermitean if   S+ = S.)  Note that a symmetric matrix is a special case of a 
Hermitean matrix;  every symmetric matrix is Hermitean.   Two important theorems 
about Hermitean matrices (which we won't prove) are:  
 
(1) The eigenvalues of a Hermitean matrix  S  are always real, even when the elements 
of  S  are complex.   
 
(2) If  S  is Hermitean, then eigenvectors corresponding to distinct (i.e., unequal) 
eigenvalues are orthogonal.  That is, if  S  is Hermitean, and if  Sa  =  λ1a,  Sb  =  λ2b,  
and  λ1 ≠ λ2,   then  a+b = 0. 
 
unitary  matrices:  If the product of a matrix with its adjoint is the identity matrix, the 
matrix is said to be unitary.  (I.e.,  S  is unitary if  S+S =  SS+ = I.)  Two important 
theorems about unitary matrices (which we won't prove) are: 
 
(1) The eigenvalues of a unitary matrix may be complex, but they always have 
magnitude  1.  That is, if  S  is unitary, and if  Sa = λa,  then  |λ| = 1. 
 
(2) If  S  is unitary,  and if  b  =  Sa,  the vectors  a  and  b  have the same magnitude. 
That is, if  S  is unitary, and if  b  =  Sa,  then   b+b  =  a+a. 
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Eigenvalues  and  Eigenvectors with Maple 
 
To use Maple's matrix algebra tools, first load the Linear Algebra package with the 
command   with(linalg);  To find the eigenvalues of a matrix  A , enter  eigenvals(A);  
or  eigenvalues(A);   The Maple output is a set of the eigenvalues, in no particular order.  
If you enter  val := eigenvalues(A);  then you can call individual eigenvalues with  
val[1];  (for the first value in the set), and so on.  If you run Maple on a different 
computer, you may get the eigenvalues in a different order;  they form a set, not a list. 
 
The command for the eigenvectors of matrix  A  is    eigenvects(A);   or  
eigenvectors(A);   The Maple output provides for the possibility that the eigenvalue 
equation may have multiple roots.  If the eigenvalues are  λ1,  λ2,  and so on, with 
multiplicities  m1,  m2,  and so on,  the Maple output has the form  

 [ , {[ , , ], [ , , ], }], [ , , {[ , , ], [ , ], }],, ,λ λ1 1 1 2 1 2 2 2 1 2 1 2m a a b b m c c d dL L L L L L L  

In this expression, eigenvalue  λ1  has multiplicity  m1,  and the following  { } brackets 
enclose a set of m1 orthogonal eigenvectors.  And similarly for  λ2, λ3,  and so on.   
 
More explicitly, the output expression is an entity with four levels of nested sets and lists.  
It is a set of structures, each enclosed in square brackets.  Each structure is itself a list 
containing three parts:  (1) an eigenvalue  (denoted above by  λ);  (2) its multiplicity 
(denoted above by  m);  and  (3) the corresponding set  (enclosed in curly brackets) of one 
or more eigenvectors (each of which is a list, enclosed in square brackets), such as   
[ , ], [ , , ],,a a b b1 2 1 2L L Lm r .  Even for an eigenvalue with multiplicity one, Maple gives 

the eigenvector as a set (with one element, i.e., one list of eigenvector components). 
 
Example 1 

The command to enter the matrix      A =
F

H
GG

I

K
JJ

5 0 0

0 0 2

0 8 0

       is   

 A := matrix(3, 3, [5,0,0,0,0,2,0,8,0]); 

The command  val := eigenvals(A);  then gives   val := 5, 4, −4.  If you want to call the 
second eigenvalue in the set  v2,  then  use the command  v2 := val[2];  the result is  4. 
 
The command      X := eigenvects(A);      gives the result 

 X  :=  [4, 1, {[0, 1, 2]}],  [−4, 1,{[0, 1, −2]}],  [5, 1, {[1, 0, 0]}] 

This confirms that the eigenvalues are  4, −4, 5  (a different order from the above result). 
It also shows that the multiplicity of each is one, and it gives the components of the 
corresponding eigenvectors.  Again, if you run this code on a different computer, the 
eigenvector structures may come out in a different order. 
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As an example, suppose we want to extract the second eigenvector (corresponding to   
λ = −4).  To do this we need to select the second structure in the set, then its third 
member (the set of eigenvectors), then the first member of the set, to get the first 
eigenvector corresponding to this eigenvalue (even though there's only one because this 
eigenvalue has multiplicity one).  If we call this eigenvector  x2,  then the appropriate 
command is  x2 := X[2][3][1];    The [2] selects the structure, the [3] the third element of 
that structure (i.e., the set of eigenvectors), and the [1] the particular eigenvector in the 
set that we want.  The resulting Maple output is   x2 := [0, 1, −2]. 
 
Ordinarily we want to treat the eigenvectors as single-column matrices.  However, Maple  
treats this expression for  x2  as a list, not a matrix.  So we have to take the extra step of 
constructing a  three-row, one-column matrix, which we may call  vec2,  using the 

command    vec2 := matrix(3,1,x2);    We get     vec2

0
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: .=
−
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have to be enclosed in square brackets because it is already a list.)  Maple treats  vec2  as 
a matrix, and we can use all the usual Maple commands for matrices.  In particular, to 
verify that this really is an eigenvector, we compute  evalm(A &* vec2);  The result is  
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indeed an eigenvector of  A  with eigenvalue  −4.  Similarly, we invite you to verify that  
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        and that these are indeed eigenvectors of  

A,  with eigenvalues  4  and  5,  respectively. 
 
 
Example 2 

The matrix  A =
F

H
GG
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K
JJ

1 0 0

0 0 1

0 1 0

   is entered with   A := matrix(3, 3, [1,0,0,0,0,1,0,1,0]);   

the eigenvalues are  −1  (with multiplicity 1)  and  1  (with multiplicity  2).  The Maple 
output for  eigenvectors(A);  is 
 
 eigenvectors(A) := [ , , {[ , , ]}], [ , , {[ , , ], [ , , ]}]− −1 1 0 1 1 1 2 0 1 1 1 0 0  
 
This says that the eigenvalue −1  has multiplicity  1  and that the corresponding 
eigenvector is  [0, −1, 1].  The eigenvalue  1  has multiplicity  2, and the corresponding 
orthogonal eigenvectors  are  [0, 1, 1]  and  [1, 0, 0].  Note that in the case of multiple 
eigenvalues, the set of eigenvectors for each  multiple eigenvalue are always orthogonal. 
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Normalization 
 
It is often useful to normalize eigenvectors.  A vector  x  is said to be normalized if the 
scalar product (or inner product) of the vector with itself is unity, that is, if   xTx, = 1.  If 
the elements of the eigenvectors are complex, then we generalize the normalization 
requirement to be    x+x = 1.  (For any vector  x,  the product  x+x  is always real and non-
negative, even when the components of  x are complex.  Can you prove this?) 
 
Any vector can be normalized by computing  xTx  (or x+x)  and then dividing each 
component of  x  by the square root of the result.  This can be done with Maple, but the 
method is a little circuitous.  If you want to call the normalized vector  xnorm,  the Maple 
command is  xnorm := normalize(x);  But this command works only on arrays or lists, 
not on matrices, because in general Maple doesn't know that a particular matrix has only 
one column.  So we have to normalize the array first, and then convert it to a matrix that 
Maple recognizes. 
 
Referring back to Example 1,   Maple doesn't understand the command  
 x2norm :=normalize(vec2);     But we can use     x2norm := normalize(x2);  
the resulting Maple output is 

 x2norm := −L
NM
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Calling the normalized eigenvector  vec2norm,  we convert x2norm to a matrix with   

 vec2norm := matrix(3, 1, x2norm); 

 (Note again that we don't need square brackets around  x2norm  because it is already a 

list.)   The Maple result is     vec2norm :=
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.     vec1norm  and  vec3norm  are 

obtained similarly.  We invite you to verify that all three eigenvectors are normalized. 
 
Here's one more Maple quirk.  We usually think of the scalar product (or inner product) 
of two vectors as a scalar quantity.  In matrix language, it is the matrix product of  aT   
and  b  (or of  a+  and  b  if  the components are complex).  But, strictly speaking, this 
product is a  1 × 1 matrix, which to Maple isn't the same thing as a single number.  To 
extract the value from inside the matrix brackets, we can take the determinant of the 
product.  Or we can designate the  [1, 1]  element of the matrix. 
 
If we have defined vectors (single-column matrices)  a  and  b  and we want the 
numerical value of the scalar product,   c = ⋅ =a b a bT ,    we can use    

 c :=det(transpose(a) &* b);     or     C := transpose(a) &* b;   and   c := C[1, 1]; 


