

2 Solving Differential Equations with Maple Fall 2003

Maple has very powerful capabilities for solving differential equations, both analytically
and numerically. In learning to use this capability, we need to have a clear understanding
of Maple's use of the terms function, expression, and equation. So let's start by
reviewing these terms.

Consider straight-line motion of a particle with constant acceleration a. If the particle
starts from rest, its distance x from the origin at time t is given by x = at 2 /2. In Maple
language we express this relationship by defining a function x with the statement

 x := t -> (a*t^2)/2;

This notation shows explicitly that the function x is a mapping; we input a value of t
and the function outputs a value of at2/2.

We could have used a different variable name, such as q, to define the function x. The
statement

 x := q -> (a*q^2)/2;

defines the same function as the previous statement, even though the variable name is
different. Thus a function has a meaning that is independent of the particular variable
name used to define it. By contrast, at2/2 is an expression; aq2/2 is a different
expression.

In Maple language, if we want to express a function s in terms of a specific variable
name, such as t, we use the notation s(t) to show that we have substituted the particular
variable name t. Thus in Maple nomenclature, if s is a function, then s(t) is not a
function; it is an expression. If this looks like a trivial distinction, stay tuned; it becomes
crucial when we need to describe initial conditions for a solution of a differential
equation.

This distinction is also important in plotting functions and expressions. In the plot
command, you must identify the independent variable when plotting an expression, but
you must NOT identify it when plotting a function. If fcn := t -> 3*t^2, expr := 3*t^2,
and we want to plot the range from 0 to 2, the following forms are OK:

 plot(fcn, 0..2); or plot(expr, t = 0..2);

but the following ones won't work:

 plot(fcn, t = 0..2) or plot(expr, 0..2);

Try them; you'll get an error message that may contain the enigmatic term "empty plot."

To belabor the point a little more, fcn := z -> cos(z); defines a function that we could
equally well write simply as fcn := cos; But cos(z) is an expression, not a function.

2-2 2 Solving Differential Equations with Maple

In a differential equation Maple always considers the dependent variable to be a function;
but the terms in the differential equation are expressions. Remembering this simple fact
will save you a lot of heartache and misery. Suppose we have a differential equation
containing x and dx/dt. (The independent variable is t and the dependent variable x.)
Then to Maple x is a function, but we have to write x and its derivative as expressions.

There are two ways to do this. (1) We can first make x into an expression x(t) and then
use the Maple command diff for the derivative of an expression: diff(x(t), t). Or
(2) we can use the Maple command D for the derivative of a function, D(x) and then
substitute in the variable name t: D(x)(t) (Remember, once again, that x and D(x)
are functions, but D(x)(t) is an expression.)

Thus the derivative dx/dt may be written in Maple notation either as diff(x(t), t) or as
D(x)(t). Similarly, d3x/dt 3 may be written as diff(x(t), t, t, t), as diff(x(t), t$3),
or as (D@@3)(x)(t). (Note the use of the symbol @@ and the parentheses for
repeated differentiation of a function.)

Now, finally, to differential equations! Follow these simple steps:

1. Write the differential equation in Maple form and give it a name, such as "diffeq."
 For example,

 m
d x
dt

k x F t
2

2
2+ = (where m, k, and F are constants) becomes

 diffeq := m*diff(x(t), t$2) + k*x(t) = F*t^2;

 Because x is a function, the dependence of x on t must be written explicitly (i.e.,
 x(t), not just x), so that the terms in the equation become expressions. Otherwise,
 Maple wouldn't know how to take the derivatives with respect to t.

2. The command for solving differential equations is dsolve. First state the
 name of the equation and then what you are solving for, i.e., the expression x(t).
 Always give the solution a name, such as "sol." For example,

 sol := dsolve(diffeq, x(t));

 If no initial conditions are given, the general solution always contains arbitrary
 constants, which Maple denotes as _C1, _C2, The solution is given as an
 equation, in the form x(t) = (an expression). In our example, the Maple output is

 := sol = ()x t − + +

F () − 2 m t2 k
k2 _C1 






cos

k m t
m

_C2 





sin

k m t
m

2 Solving Differential Equations with Maple 2-3

 If you want to work with the expression on the right side of the equation, you can
 peel it off by giving it a name, say xx, and using

 xx := rhs(sol);

3. To solve a differential equation with initial conditions (and thus evaluate the
 arbitrary constants), write the initial conditions as separate equations and use
 assignment statements to give them names, such as "init1," "init2," and so on. If
 an initial condition involves the value of a derivative of x at a particular time, it
 must be written with the D notation, not the diff notation. Example: If at time
 t = 0, x has the value xo and dx/dt has the value vo, we write

 init1 := x(0) = xo; and init2 := D(x)(0) = vo;

 In this case we must tell Maple to solve simultaneously a list or set of equations
 consisting of the differential equation and the initial conditions, as follows:

 sol := dsolve([diffeq, init1, init2], x(t)); or

 sol := dsolve({diffeq, init1, init2}, x(t));

 (Note the use of brackets to denote a list or set.) For the example on page 2-2, the
 Maple output is

 = ()x t − + +
F () − 2 m t2 k

k2

() + 2 F m xo k2 





cos

k m t
m

k2

vo m 





sin

k m t
m

k m

4. If you want to graph the solution x(t), you must first insert numerical values for
 all parameters (such as m, k, and F), and for all initial values (such as xo and
 vo). This can be done in two ways; one way is to use a string of assignments, such as

 m := 4; k := 100; F := 4; xo := 1; vo := 3;

 Alternatively, use the command subs:

 xx := subs(m = 4, k = 100, F = 4, xo = 1, vo = 3, rhs(sol));

 plot(rhs(sol), t = 0..6); or plot(xx, t = 0..6);

5. It’s always a good idea to check your solution to make sure it satisfies the
 differential equation and the initial conditions, by substituting it back into the
 differential equation and also checking that the initial conditions are satisfied.

6. Often the solutions of a differential equation cannot be expressed in terms of
 familiar functions. In such cases Maple can do an approximate numerical solution to
 get an approximate numerical value of the expression x(t) for any value of t, using
 one of several methods such as Euler, Runge-Kutta, and others. If you haven't
 heard of these, don't worry. We'll study these methods briefly in Section 3, to get a
 rough idea of what Maple does to obtain a numerical solution.

2-4 2 Solving Differential Equations with Maple

 To get a numerical solution of a differential equation, you must specify initial
 conditions. Before the dsolve command, you must give numerical values for all
 parameters (such as m, k, and F), and for all initial values (such as xo and vo).
 The appropriate command for the example on page 2-2 is

 sol := dsolve([diffeq, init1, init2], x(t), numeric);

 The solution emerges as a procedure; that is, sol behaves in Maple like a
 function. Then the value of x for some particular value of t, say 5, is given by
 sol(5). Actually, the output from sol(5) is a list, containing three items: (1) the
 value of t, (2) the value of x at that t, and (3) the value of dx/dt at that t. You
 can give this list a name, such as value. That is, value := sol(5); If you just
 want the value of x, which you might call xvalue, you can use value[2] to select
 the second item in the list. That is,

 xvalue :=value[2]; or xvalue := sol(5)[2];

7. Numerical solutions can’t be graphed with the ordinary plot command. Instead,
 use a special command odeplot that computes numerical values of the function at
 many points within your specified range and then plots them. This is part of the
 plots package, so you first have to load this package using with(plots, odeplot);
 Then to get a graph from t = 0 to 6 (for example), use odeplot(sol, 0..6); Note
 once again that sol is a function, not an expression, so you must specify the range
 as 0..6, and not as t = 0..6. If you use t = 0..6 , you’ll get a graph, but not
 necessarily the one you expect. We invite you to carry out a numerical solution of
 the example on page 2-2 and compare the resulting graph with the one from the
 analytic solution.

8. An alternative form is odeplot(sol, [t, x(t)], 0..6); where [t, x(t)] is a
 list of the horizontal and vertical coordinates. With this command, t (the first item
 inside the square brackets) is plotted on the horizontal axis and x (second in the
 brackets) on the vertical axis. This is analogous to the parametric form of the
 ordinary plot command. You can also use this form to make a phase plot, which
 is a plot with dx/dt on the vertical axis and x on the horizontal. To do this, use

 odeplot(sol, [x(t), diff(x(t), t)], 0..6);

 The numbers 0..6 are the limits for the independent variable t. We'll use phase
 plots a lot in this course to study behavior of dynamical systems.

9. All the usual options for plots, such as color, line weight, axis labels, titles, and so
 on, can be used with odeplot just as with plot. For a listing of all the available
 plot options, type ?plot[options]. Also check out ?plot[setoptions] and
 ?plot[style]. The command odeplot can also be used to generate a plot structure,
 which then enables you to superimpose this graph on other graphs. More about plot
 structures later.

