8 Coupled Oscillators and Normal Modes Fall 2003

An undamped harmonic oscillator (amass m and a Hooke's-law spring with force
congtant k) has only one naturd frequency of oscillation, w, = ./k/m. But when two
or more such ostillatorsinteract, several naturd frequencies are possible.

Let's congder a system of masses and Hooke's-law springs that has a stable equilibrium
position, such that each mass can vibrate around its equilibrium postion. Arethere
possible mationsin which every mass moves with smple harmonic mation, al masses
with the same frequency? Such amotion, when it exids, is caled a normal-mode motion.
We will now develop generd methods for finding the possible norma modes of such a
system and their associated frequencies. WEell assume throughout that the spring forces
are linear functions of displacement. Well illugtrate the genera method by use of

the following specific example.

Example

Let's consder the system shown below. The two masses move dong adraight line. In
the equilibrium pogtions, the springs are neither stretched nor compressed, and the
coordinates x; and x» arethe displacements of the particles from equilibrium.

Equilibrium positions

~ N

If k' =0 (i.e, if the center spring is removed), we have two uncoupled harmonic

osillators, each one can vibrate with angular frequency w = ./k/m, with arbitrary
amplitude and phase. When the central spring isincluded, there are two cases where the
masses can oscillate with the same frequency:

1) If x1 =X, a eachindant, then soring k' is never stretched or compressed, and it can
beignored. The two masses vibrate snusoiddly, in phase, with the same angular

frequency w = 4/k/m, and with equa amplitudes.

2) If x1=-X; a eachingant, the midpoint of soring k' issationary, and the force it
exerts on each massis like that of a spring with force constant 2 k'. Thetotal force on
each massisthe same as for a goring with force congant k + 2 k*. Inthis case, the two

masses move snusoiddly with angular frequency w = 4/(k + 2k')/m, with equd
amplitudes but a hdf-cycle out of phase.
Thus this system has two normal modes, one with angular frequency w = ,/k/m, the

other with w = 4/(k + 2k')/m. Each mode has a characteristic vibration pattern (i.e, a
relaion between the amplitudes and phases of the motions of the two masses).
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General Method

In our example, the symmetry of the problem alowed us to guess the norma modes, but
we need a more systematic and general approach. To develop this approach, we start

with the equations of motion, from SF = ma. They are

-k K (X - Xq) = my,
- kX2 - kI(XZ - Xl) = sz.

@

(Be sure you understand the various + and - dgnsin these equations.)

Now we guess that these equations have a solution in the form
X, = & cos(wt +j ), X, = a,cowt +j ), )

where w isnot yet known and the amplitudes a; and a, may be related.

To test whether (or under what circumstances) these expressionsreally do satisfy Egs.
(1), we carry out the derivatives and subgtitute back into Egs. (1). After dividing out the
common factor cos(wt +j ) and re-arranging, we get

-ka, +k'(a, - a)) = -mw?a,,

-ka, - K'(a, - &) = -mw’a,,
or
(k +k'- mw’)a, - k'a, =0, @
-k'a, +(k +k'- mw’)a, = 0.
Thatis, Egs (2) areasolution of the equations of motion, Egs. (1), if (and only if)
Egs. (3) are satisfied.

Egs. (3) areapair of simultaneous, homogeneous equations for the amplitudes a; and
ay. They always havethetrivid solution a; = a, =0. A fundamenta theorem of linear
algebra states that non-trivial solutions for these equations exigt if (and only if) the
determinant of the sysem iszero. Thus a necessary and sufficient condition for the
existence of non-trivid solutionsis

K+ k- mw? -K

=0. 4
-k’ k+Kk'- mw ®

(For further discussion of this point, please refer to Section 9, pages 9-4 and 9-5.)
Thevduesof k, k', and m arefixed, so we conclude that the assumed solutionisvalid

only for certain specid vauesof w, the valuesthat satisfy Eq. (4). Thisequation for w
iscdled the secular equation. When we multiply out the determinant, we get
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(k +k'- mw?)* = k' and K+k'- mw? =+Kk'.
Assuming w3 0, we get

k k + 2k’
wW=.,|— and w = ,
m ' m

in agreement with our previous result.

Eachvdueof w inEgs. (6) isanorma-mode frequency. To get the amplitude reaions
for each norma mode, we subgtitute each valuefor w back into Egs. (3):

k'a - k'a, =0,
For w2 :E, & % le, a=a.
m -k'a, +k'a, = 0.
. -k'a,- K'a, =0,
For w? = K+ 2K , & % le, a=-a.
m -k'a, - k'a, =0.

In each case, the equations don't give us specific valuesfor a; and ap, but they show
that they must be rdated in avery particular way.

Each of these possibilitiesis anormal mode, with a definite frequency and ardation
between the amplitudes, describing the pattern of the motion. The most genera mation
of the system is a superposition of these norma modes, with arbitrary phases. Cdl the
modes Mode 1 and Mode 2, with

k k + 2k’
Wl = a and W2 = m .

Thenfor Mode 1, with a; =a,=a,
x, = acos(w,t +j , ),
X, =acos(w;t +j ,),

and for Mode 2, with a; =-ax =D,
X, = bcos(wzt +j 2),
X, = -bcos(w,t +j ,).

The most generd motion of the system is described by equations with four arbitrary
constants a, b, j 1, and j 2, determined by theinitia conditions

X = acos(wlt +] 1) + bcos(wzt +] 2),

X, =acos(w;t +j,)- bcos(w,t +]j ,).

©)

(6)

(1)

(8)

©)

(10)

(11)

(12)

The amplitudefactor a and the phaseangle j 1 are associated with Mode 1, and b and

j 2 areassociated with Mode 2.
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Normal Coordinates

Suppose we cdl the two sinusoidd varigbles g1 and Qy:

O = aCOS(Wlt ] 1)’ Then X1 =0p* 0y, (13)
0, =bcos(w,t +j ,). X2 =01 - O
We can express the equations of motion, Egs. (1), interms of the variables g1 and qp.
Substituting Egs. (13) into Egs. (1) and re-arranging, we get
Mty +G) = - ke - (k + 2)ap, (14)
m(é - bp) = - kgg + (k + 2k")qp.
Now note that by simply adding or subtracting these equations, we can obtain separate
equationsfor g; and Qp:
méh = - ke,
Ch Q; (15)

qu = - (k + 2k')q2

These equations show that the coordinate ¢ varies sinusoidaly with angular frequency

Wy = Jw_m and g with angular frequency w, = ,/(k +2k')/m, aswe should
expect. Thusif we had been lucky enough (or clever enough) touse g; and ¢ as
coordinates a the start, we would have obtained the norma modesimmediately. Each
norma mode consigs of amotion in which only one of the g's is different from zero.

The g's arecaled normal coordinates for this system, and the transformation from the
X's tothed's, given by Egs. (13), isanormal-coordinate transformation. Y ou can verify
that the inverse trandformation, giving the g's intermsof the x's, is

(16)

Energy

The tota energy of the system can be expressed in terms of the normal coordinates. In
terms of the origina coordinates x; and X», thetota energy is

2

E=T+V=2m’ +2mio” + 2h® +Lhoo” + 2K (% - %)° (17)

Subdtituting Egs. (13) into this expresson and re-arranging, we get

E = ”((hz + CI22) +key® + (k + 2K

= [mq12 + kq12] + [mq22 + (k + 2k')q22]_ (18)
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We see that the total energy separates into terms containing only ¢ and its derivative
and terms containing only ¢ and its derivaive. We invite you to verify that agamilar
separation occurs with the Lagrangian function L=T - V.

Limitations

Our entire analysis has made use of the fact that the restoring forces are linear functions
of the coordinates. When non-linear forces are present, in genera thereis no such thing
as normal-mode motion. Just as a Sngle-mass oscillator with a non-linear restoring force
has a frequency that depends on the amplitude of the motion, so it iswith more complex
systems when non-linear forces are present.

Matrix Formulation

The norma-coordinate transformation given by Egs. (13) and (16) can be expressed
compactly usng matrix language. Each set of coordinates is represented by a one-
column matrix, and the linear transformation from one to the other is given by asquare
matrix A. In the above example,

(% (% A = 11 19
X_(xzj’ q_(qz]’ _(1 'J' "

Then the transformation given by Egs. (13) can bewritten Smply as  x = AQ.

Similarly, the inverse transformation can bewrittenas q = A x, where

A.l_% z ] _ 11 1
2 -2 2l -1)

You can verify that AA™1=ATA =1, where | istheidentity matrix (or unit matrix):

69

Matrix methods are a very powerful tool for andyzing norma modes of complex
systems. Well discuss them in a separate chapter.

(If you need to review matrix multiplication or other aspects of matrix algebra, plesse
consult Edwards and Penney Differential Equations and Boundary Value Problems,
2nd ed., Section 5.1, pp. 284-290. This section aso includes abrief discussion of
determinants.)
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