
8    Coupled  Oscillators  and  Normal  Modes Fall  2003 
 
An undamped harmonic oscillator  (a mass  m  and a Hooke's-law spring with force 
constant  k)  has only one natural frequency of oscillation,  ωo = k m.  But when two 
or more such oscillators interact,  several natural frequencies are possible.   
 
Let's consider a system of masses and Hooke's-law springs that has a stable equilibrium 
position, such that each mass can vibrate around its equilibrium position.  Are there 
possible motions in which every mass moves with simple harmonic motion, all masses 
with the same frequency?  Such a motion, when it exists, is called a normal-mode motion.  
We will now develop general methods for finding the possible normal modes of such a 
system and their associated frequencies.  We'll assume throughout that the spring forces 
are linear functions of displacement.  We'll illustrate the general method by use of 
the following specific example. 
 
Example 
 
Let's consider the system shown below.  The two masses move along a straight line.  In 
the equilibrium positions, the springs are neither stretched nor compressed, and the 
coordinates  x1  and  x2  are the displacements of the particles from equilibrium. 

 
If  k '   = 0  (i.e., if the center spring is removed), we have two uncoupled harmonic 

oscillators;  each one can vibrate with angular frequency ω = k m ,   with arbitrary 
amplitude and phase.  When the central spring is included,  there are two cases where the 
masses can oscillate with the same frequency: 
 
1)  If  x1 = x2  at each instant, then spring  k '  is never stretched or compressed, and it can 
be ignored.  The two masses vibrate sinusoidally, in phase, with the same angular 
frequency  ω = k m ,   and with equal amplitudes. 
 
2)  If  x1 = −x2  at each instant, the midpoint of spring  k '   is stationary, and the force it 
exerts on each mass is like that of a spring with force constant 2 k ' .  The total force on 
each mass is the same as for a spring with force constant  k + 2 k ' .  In this case, the two 

masses move sinusoidally with angular frequency  ω = +( ' )k k m2 ,  with equal 
amplitudes but a half-cycle out of phase. 

Thus this system has two normal modes, one with angular frequency  ω = k m , the  

other with  ω = +( ' )k k m2 .  Each mode has a characteristic vibration pattern (i.e., a 
relation between the amplitudes and phases of the motions of the two masses). 
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General Method 
 
In our example, the symmetry of the problem allowed us to guess the normal modes, but 
we need a more systematic and general approach.  To develop this approach, we start 
with the equations of motion, from  ΣF = ma.  They are 
 

 
− + − =
− − − =

kx k x x mx

kx k x x mx
1 2 1 1

2 2 1 2

' ( ) && ,

' ( ) && .
  (1) 

 
(Be sure you understand the various  +  and  −  signs in these equations.) 
 
Now we  guess  that these equations have a solution in the form 
 
 x a t x a t1 1 2 2= + = +cos , cos ,ω ϕ ω ϕb g b g  (2) 
 
where  ω  is not yet known and the amplitudes  a1  and  a2  may be related. 
To test whether (or under what circumstances) these expressions really do satisfy Eqs. 
(1), we carry out the derivatives and substitute back into Eqs. (1).  After dividing out the 
common factor  cos (ωt + ϕ)  and re-arranging, we get 
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That is,  Eqs. (2)  are a solution of the equations of motion,  Eqs. (1),  if (and only if)  
Eqs. (3)  are satisfied.   
 
Eqs. (3)  are a pair of simultaneous, homogeneous equations for the amplitudes  a1  and  
a2.  They always have the trivial solution  a1 = a2 = 0.  A fundamental theorem of linear 
algebra states that non-trivial solutions for these equations exist if (and only if) the 
determinant of the system is zero.  Thus a necessary and sufficient condition for the 
existence of non-trivial solutions is 
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(For further discussion of this point, please refer to Section 9, pages 9-4 and 9-5.) 
 
The values of  k,  k ' ,  and  m  are fixed, so we conclude that the assumed solution is valid 
only for certain special values of  ω,  the values that satisfy Eq. (4).  This equation for  ω  
is called the secular equation.  When we multiply out the determinant, we get 
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Assuming  ω ≥ 0,  we get      
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in agreement with our previous result. 
 
Each value of  ω  in Eqs. (6)  is a normal-mode frequency.  To get the amplitude relations 
for each normal mode, we substitute each value for  ω  back into  Eqs. (3): 
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In each case, the equations don't give us specific values for  a1  and  a2,  but they show 
that they must be related in a very particular way. 
 
Each of these possibilities is a normal mode, with a definite frequency and a relation 
between the amplitudes, describing the pattern of the motion.  The most general motion 
of the system is a superposition of these normal modes, with arbitrary phases.  Call the 
modes  Mode 1 and Mode 2, with  
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Then for Mode 1,   with  a1 = a2 = a, 
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and for Mode 2,  with  a1 = −a2 = b,  
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The most general motion of the system is described by equations with four arbitrary 
constants  a,  b,  ϕ1,  and  ϕ2,  determined by the initial conditions: 
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The amplitude factor  a  and the phase angle  ϕ1  are associated with Mode 1, and  b  and  
ϕ2  are associated with Mode 2. 
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Normal Coordinates 
 
Suppose we call the two sinusoidal variables  q1  and  q2: 
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We can express the equations of motion, Eqs. (1), in terms of the variables  q1  and  q2.  
Substituting Eqs. (13)  into Eqs. (1) and re-arranging, we get 
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Now note that by simply adding or subtracting these equations, we can obtain separate 
equations for  q1  and  q2: 
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These equations show that  the coordinate  q1  varies sinusoidally with angular frequency 

ω1 = k m ,  and  q2  with angular frequency  ω2 2= +( ' ) ,k k m   as we should 
expect.  Thus if we had been lucky enough (or clever enough) to use  q1  and  q2  as 
coordinates at the start, we would have obtained the normal modes immediately.  Each 
normal mode consists of a motion in which only one of the  q's  is different from zero. 
 
The  q's  are called  normal coordinates for this system, and the transformation from the 
x 's  to the q's, given by Eqs. (13),  is a normal-coordinate transformation.  You can verify 
that the inverse transformation, giving the  q's  in terms of the  x 's,  is 
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Energy 
 
The total energy of the system can be expressed in terms of the normal coordinates.  In 
terms of the original coordinates  x1  and  x2,  the total energy is 
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Substituting  Eqs. (13)  into this expression and re-arranging, we get 
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We see that the total energy separates into terms containing only  q1  and its derivative 
and terms containing only  q2  and its derivative.  We invite you to verify that a similar 
separation occurs with the Lagrangian function  L = T − V. 
 
Limitations 
 
Our entire analysis has made use of the fact that the restoring forces are linear functions 
of the coordinates.  When non-linear forces are present, in general there is no such thing 
as normal-mode motion.  Just as a single-mass oscillator with a non-linear restoring force 
has a frequency that depends on the amplitude of the motion, so it is with more complex 
systems when non-linear forces are present. 
 
Matrix Formulation 
 
The normal-coordinate transformation given by Eqs. (13)  and  (16)  can be expressed 
compactly using matrix language.  Each set of coordinates is represented by a one-
column matrix, and the linear transformation from one to the other is given by a square 
matrix  A.  In the above example,  
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Then the transformation given by Eqs. (13) can be written simply as    x = Aq. 
 
Similarly, the inverse transformation can be written as  q = A−1x,  where 
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You can verify that  AA−1 = A−1A = I,   where  I  is the identity matrix (or unit matrix): 
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Matrix methods are a very powerful tool for analyzing normal modes of complex 
systems.  We'll discuss them in a separate chapter.   
 
(If you need to review matrix multiplication or other aspects of matrix algebra, please 
consult Edwards and Penney  Differential Equations and Boundary Value Problems,   
2nd ed., Section 5.1, pp. 284-290.  This section also includes a brief discussion of 
determinants.)   
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