24-352 DYNAMIC SYSTEMS & CONTROL

HOMEWORK ASSIGNMENT #3

DUE 1/7/01

PROBLEMS

 A turbine blade has a natural frequency of 500 Hz. The turbine has a speed range of 5000 to 12000 rpm. Draw a Campbell plot for this blade and circle all critical speeds. How would you change the frequency of this blade if you could alter it by no more than 10%.

Figure 1

- Consider the system of Figure 1. Use the complex exponential approach to determine the steady-state response to the cosine wave input.
- 3. Suppose that in the system shown in Figure 1, $y(t) = Y_0H(t)$ where H(t) is the "Heaviside step function" defined as

$$H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases} \text{ and that } x(0) = 0 \text{ and } \dot{x}(0) = 0.$$

Assume that the system is underdamped.

- a. Find x(t).
- b. If $m = k_2 = 1$, $c_1 = c_2 = 0.1$, and $Y_0 = 1$. Plot x(t) for 0 < t < 0.5.