24-261 Statics Problem Set #9

- 1. Problem 2.4-9 (Gere, Mechanics of Materials)
- 2. Problem 2.4-14 (Gere, Mechanics of Materials)
- 3. Problem 2.6-13 (Gere, Mechanics of Materials). Rather than the question posed, (i) determine the normal force and shear force acting across the brazed face using equilibrium of the left portion of the bar; (ii) determine the area of the brazed face (it is elliptical in shape) assuming the bar diameter is 2"; (iii) determine the normal stress and shear stress acting across the brazed face.

4. In this problem you will consider the analysis of a four-bar linkage. This common mechanism is a part of the apparatus in Laboratory #5. The ground link L4 is stationary. The link L1 drives the mechanism and links L2 and L3 respond.

The following page shows the geometry and a simple analysis for relating the angle at one side $(?_2)$ to the angle at the other side $(?_1)$. This analysis has been implemented in a spreadsheet for the particular case of $L_1 = 6$, $L_2 = 3$, $L_3 = 8$, and $L_4 = 12$. This spreadsheet is being emailed to you separately.

In the spreadsheet we have considered two values of the angle $?_1$ (48? and 50?). Using trial and error, we found approximately the associated values for $?_2$.

You are to begin with the same spreadsheet and do the following:

Consider the values for $?_1 = 54$? and 60?, and find, to a similar level of accuracy, the associated values for $?_2$.

Determine how to evaluate the angles $?_3$ and $?_4$, as defined on the following page. Derive the formulas for $?_3$ and $?_4$, and then determine those angles for all values $?_1 = 48?$, 50?, 54? and 60?. These should be additional columns in the spreadsheet.

Continuing Assignment to Evaluate Educational Software (Courseware)

Students with last names beginning with the letters A through K will complete the use of the axial module by solving the remaining problems. Log Files should again be sent to Jesse Olson, as described in Problem Set #8.

Horizontal components: L, coso, + L2 coso2 + AX3 = L4 Vertical components: L2 sin 02 + Ay3 = Lisin 0, Solve for AX3, Ay3 and insist that AX3² + Ay3² = L3² [L4 - Li coso1 - L2 cos 02]² + [Li sin 0; - L2 sin 02]² = L3² (A) Consider angle 0, as having some value, Find value of 02 which satisfies last equation. Specific case: $L_1 = 6, L_2 = 3, L_3 = 8, L_4 = 12$ Here we considered $Q_1 = 48^{\circ}$ (and then 50°) For 48° we used trial And error to pick value of θ_2 which fives the calculated L_3 (calcid L_3 is the left side of equation (A)).

Can see that $\theta_2 = 87.7^\circ$ gave 7.9994. (which is close to 8).

Len1	Len2	Len3	Len4		
6	3	8	12		
Theta 1 (deg)	Theta 1 (rad)	Theta 2 (deg)	Theta 2 (rad)	Calc'd L3	
48	0.837758041	88	1.535889742	8.014748662	
48	0.837758041	87	1.518436449	7.963740309	
48	0.837758041	89	1.553343034	8.065970875	
48	0.837758041	87.5	1.527163095	7.989216521	
48	0.837758041	87.6	1.528908425	7.994318554	
48	0.837758041	87.7	1.530653754	7.999422805	
50	0.872664626	82	1.431169987	7.894898296	
50	0.872664626	83	1.448623279	7.944309317	• ··· ·
50	0.872664626	84	1.466076572	7.994049882	
50	0.872664626	85	1.483529864	8.044098868	
50	0.872664626	84.3	1.471312559	8.009033147	
50	0.872664626	84.1	1.467821901	7.999041247	
					175.623
		- 			
			۲. ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰		
	4.				
					
			and the second second		
					n de la della d Nota della
					· · · · · · ·
				:	