Solutions to extra problems in Chapter 9:
November 17, 2000
J. Murthy
9.10 Atmospheric air at $-45^{\circ} \mathrm{C}, 60 \mathrm{kPa}$ enters the front diffuser of a jet engine with a velocity of $900 \mathrm{~km} / \mathrm{h}$ and frontal area of $1 \mathrm{~m}^{2}$. After the adiabatic diffuser the velocity is $20 \mathrm{~m} / \mathrm{s}$. Find the diffuser exit temperature and the maximum pressure possible.
C.V. Diffuser, SSSF single inlet and exit flow, no work or heat transfer.

Energy Eq.: $\quad h_{i}+\mathbf{V}_{\mathrm{i}}^{2} / 2=h_{e}+\mathbf{V}_{\mathrm{e}}^{2} / 2, \quad$ and $\quad h_{e}-h_{i}=C_{p}\left(T_{e}-T_{i}\right)$
Entropy Eq.: $\quad \mathrm{s}_{\mathrm{i}}+\int \mathrm{dq} / \mathrm{T}+\mathrm{s}_{\mathrm{gen}}=\mathrm{s}_{\mathrm{i}}+0+0=\mathrm{s}_{\mathrm{e}} \quad$ (Reversible, adiabatic)
Heat capacity and ratio of specific heats from Table A. 5 in the energy equation then gives:

$$
\begin{gathered}
1.004\left[\mathrm{~T}_{\mathrm{e}}-(-45)\right]=0.5\left[(900 \times 1000 / 3600)^{2}-20^{2}\right] / 1000=31.05 \mathrm{~kJ} / \mathrm{kg} \\
\Rightarrow \mathrm{~T}_{\mathrm{e}}=-14.05^{\circ} \mathrm{C}=\mathbf{2 5 9 . 1} \mathbf{K}
\end{gathered}
$$

Constant $\mathrm{s}: \quad \mathrm{P}_{\mathrm{e}}=\mathrm{P}_{\mathrm{i}}\left(\mathrm{T}_{\mathrm{e}} / \mathrm{T}_{\mathrm{i}}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}=60(259.1 / 228.1)^{3.5}=\mathbf{9 3 . 6} \mathbf{~ k P a}$
9.12 Two flowstreams of water, one at 0.6 MPa , saturated vapor, and the other at 0.6 $\mathrm{MPa}, 600^{\circ} \mathrm{C}$, mix adiabatically in a SSSF process to produce a single flow out at $0.6 \mathrm{MPa}, 400^{\circ} \mathrm{C}$. Find the total entropy generation for this process.

Cont.: $\quad \dot{\mathrm{m}}_{3}=\dot{\mathrm{m}}_{1}+\dot{\mathrm{m}}_{2}, \quad$ Energy Eq.: $\quad \dot{\mathrm{m}}_{3} \mathrm{~h}_{3}=\dot{\mathrm{m}}_{1} \mathrm{~h}_{1}+\dot{\mathrm{m}}_{2} \mathrm{~h}_{2}$
$\Rightarrow \dot{\mathrm{m}}_{1} / \dot{\mathrm{m}}_{3}=\left(\mathrm{h}_{3}-\mathrm{h}_{2}\right) /\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)=0.456$
Entropy Eq.: $\quad \dot{\mathrm{m}}_{3} \mathrm{~s}_{3}=\dot{\mathrm{m}}_{1} \mathrm{~s}_{1}+\dot{\mathrm{m}}_{2} \mathrm{~s}_{2}+\dot{\mathrm{S}}_{\text {gen }} \quad \Rightarrow$

$$
\begin{aligned}
\dot{\mathrm{S}}_{\text {gen }} / \dot{\mathrm{m}}_{3} & =\mathrm{s}_{3}-\left(\dot{\mathrm{m}}_{1} / \dot{\mathrm{m}}_{3}\right) \mathrm{s}_{1}-\left(\dot{\mathrm{m}}_{2} / \dot{\mathrm{m}}_{3}\right) \mathrm{s}_{2} \\
& =7.7078-0.456 \times 6.760-0.544 \times 8.2674=\mathbf{0 . 1 2 8} \mathbf{~ k J} / \mathbf{k g ~ K}
\end{aligned}
$$

9.19 Air at $327^{\circ} \mathrm{C}, 400 \mathrm{kPa}$ with a volume flow $1 \mathrm{~m}^{3} / \mathrm{s}$ runs through an adiabatic turbine with exhaust pressure of 100 kPa . Neglect kinetic energies and use constant specific heats. Find the lowest and highest possible exit temperature. For each case find also the rate of work and the rate of entropy generation.
C.V Turbine. SSSF, single inlet and exit flows, $q=0$.

Inlet state: $(T, P) \quad v_{i}=R T_{i} / P_{i}=0.287 \times 600 / 400=0.4305 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\dot{\mathrm{m}}=\dot{\mathrm{V}} / \mathrm{v}_{\mathrm{i}}=1 / 0.4305=2.323 \mathrm{~kg} / \mathrm{s}
$$

The lowest exit T is for max work out i.e. reversible case

$$
\begin{gathered}
\text { Constant } \mathrm{s} \Rightarrow \quad \mathrm{~T}_{\mathrm{e}}=\mathrm{T}_{\mathrm{i}}\left(\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{i}}\right)^{\frac{\mathrm{k}-1}{\mathrm{k}}}=600 \times(100 / 400)^{0.2857}=403.8 \mathrm{~K} \\
\Rightarrow \quad \mathrm{w}=\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{e}}=\mathrm{C}_{\mathrm{Po}}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{e}}\right)=1.004 \times(600-403.8)=197 \mathrm{~kJ} / \mathrm{kg} \\
\dot{\mathrm{~W}}_{\mathrm{T}}=\dot{\mathrm{mw}}=0.4305 \times 197=\mathbf{4 5 7 . 6} \mathbf{k W} \quad \text { and } \quad \dot{\mathrm{S}}_{\text {gen }}=\mathbf{0}
\end{gathered}
$$

Highest exit T occurs when there is no work out, throttling

$$
\begin{gathered}
\mathrm{q}=\varnothing ; \mathrm{w}=\varnothing \quad \Rightarrow \mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{e}}=0 \Rightarrow \mathrm{~T}_{\mathrm{e}}=\mathrm{T}_{\mathrm{i}}=\mathbf{6 0 0} \mathbf{K} \\
\dot{\mathrm{S}}_{\mathrm{gen}}=\dot{\mathrm{m}}\left(\mathrm{~s}_{\mathrm{e}}-\mathrm{s}_{\mathrm{i}}\right)=-\dot{\mathrm{m} R} \ln \mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{i}}=-2.323 \times 0.287 \ln \frac{100}{400}=\mathbf{0 . 9 2 4} \mathbf{k W} / \mathbf{K}
\end{gathered}
$$

9.21 Air enters a turbine at $800 \mathrm{kPa}, 1200 \mathrm{~K}$, and expands in a reversible adiabatic process to 100 kPa . Calculate the exit temperature and the work output per kilogram of air, using
a. The ideal gas tables, Table A. 7
b. Constant specific heat, value at 300 K from table A. 5
c. Constant specific heat, value at an intermediate temperature from Fig. 5.1 Discuss why the method of part (b) gives a poor value for the exit temperature and yet a relatively good value for the work output.

C.V. Air turbine. Adiabatic; $q=0$, reversible: $s_{g e n}=0$

Energy: $\quad w_{T}=h_{i}-h_{e}$, Entropy Eq.: $\quad \mathrm{s}_{\mathrm{e}}=\mathrm{s}_{\mathrm{i}}$
a) Table A.7: $\quad h_{i}=1277.8, \quad P_{r i}=191.174$

$$
\begin{aligned}
& \Rightarrow P_{r e}=P_{\mathrm{ri}} \times \mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{i}}=191.174 \times 100 / 800=23.897 \\
& \Rightarrow \mathrm{~T}_{\mathrm{e}}=\mathbf{7 0 6 ~ K}, \quad \mathrm{h}_{\mathrm{e}}=719.9 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{w}=\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{e}}=\mathbf{5 5 7 . 9} \mathbf{~ k J} / \mathbf{k g}
\end{aligned}
$$

b) $\mathrm{T}_{\mathrm{e}}=\mathrm{T}_{\mathrm{i}}\left(\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{i}}\right)^{\frac{\mathrm{k}-1}{k}}=1200\left(\frac{100}{800}\right)^{.286}=\mathbf{6 6 2 . 1} \mathrm{K}$

$$
\mathrm{w}=\mathrm{C}_{\mathrm{Po}}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{e}}\right)=1.004(1200-662.1)=\mathbf{5 3 9 . 8} \mathbf{~ k J} / \mathbf{k g}
$$

c) Fig. 5.10 at $\sim 1000 \mathrm{~K}: \overline{\mathrm{C}}_{\mathrm{Po}} \sim 32.5, \overline{\mathrm{C}}_{\mathrm{Vo}}=\overline{\mathrm{C}}_{\mathrm{Po}}-\overline{\mathrm{R}} \sim 24.2$

$$
\begin{aligned}
& \mathrm{k}=\overline{\mathrm{C}}_{\mathrm{Pd}} / \overline{\mathrm{C}}_{\mathrm{Vo}} \sim 1.343, \quad \mathrm{~T}_{\mathrm{e}}=1200(100 / 800)^{0.255}=\mathbf{7 0 6 . 1} \mathbf{~ K} \\
& \mathrm{w}=(32.5 / 28.97)(1200-706.1)=\mathbf{5 5 4 . 1} \mathbf{~ k J} / \mathbf{k g}
\end{aligned}
$$

In b) $k=1.4$ is too large and C_{p} too small.
9.23 A supply of $5 \mathrm{~kg} / \mathrm{s}$ ammonia at $500 \mathrm{kPa}, 20^{\circ} \mathrm{C}$ is needed. Two sources are available one is saturated liquid at $20^{\circ} \mathrm{C}$ and the other is at $500 \mathrm{kPa}, 140^{\circ} \mathrm{C}$. Flows from the two sources are fed through valves to an insulated SSSFmixing chamber, which then produces the desired output state. Find the two source mass flow rates and the total rate of entropy generation by this setup.
C.V. mixing chamber + valve. SSSF, no heat transfer, no work.

Continuity Eq.: $\quad \dot{\mathrm{m}}_{1}+\dot{\mathrm{m}}_{2}=\dot{\mathrm{m}}_{3} ; \quad$ Energy Eq.: $\quad \dot{\mathrm{m}}_{1} \mathrm{~h}_{1}+\dot{\mathrm{m}}_{2} \mathrm{~h}_{2}=\dot{\mathrm{m}}_{3} \mathrm{~h}_{3}$
Entropy Eq.: $\quad \dot{\mathrm{m}}_{1} \mathrm{~s}_{1}+\dot{\mathrm{m}}_{2} \mathrm{~s}_{2}+\dot{\mathrm{S}}_{\text {gen }}=\dot{\mathrm{m}}_{3} \mathrm{~s}_{3}$

State 1: Table B.2.1 $\mathrm{h}_{1}=273.4 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{s}_{1}=1.0408 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
State 2: Table B.2.2 $\mathrm{h}_{2}=1773.8 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{s}_{2}=6.2422 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
State 3: Table B.2.2 $\quad \mathrm{h}_{3}=1488.3 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{s}_{3}=5.4244 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$\dot{\mathrm{m}}_{1} \mathrm{~h}_{1}+\left(\dot{\mathrm{m}}_{3}-\dot{\mathrm{m}}_{2}\right) \mathrm{h}_{2}=\dot{\mathrm{m}}_{3} \mathrm{~h}_{3} \quad \Rightarrow \quad \dot{\mathrm{~m}}_{1}=\dot{\mathrm{m}}_{3} \frac{\mathrm{~h}_{3}-\mathrm{h}_{2}}{\mathrm{~h}_{1}-\mathrm{h}_{2}}=0.952 \mathrm{~kg} / \mathrm{s}$
$\dot{\mathrm{m}}_{2}=\dot{\mathrm{m}}_{3}-\dot{\mathrm{m}}_{1}=4.05 \mathrm{~kg} / \mathrm{s}$
$\dot{\mathrm{S}}_{\text {gen }}=5 \times 5.4244-0.95 \times 1.0408-4.05 \times 6.2422=\mathbf{0 . 8 5 2} \mathbf{k W} / \mathrm{K}$
9.49 A certain industrial process requires a steady $0.5 \mathrm{~kg} / \mathrm{s}$ of air at $200 \mathrm{~m} / \mathrm{s}$, at the condition of $150 \mathrm{kPa}, 300 \mathrm{~K}$. This air is to be the exhaust from a specially designed turbine whose inlet pressure is 400 kPa . The turbine process may be assumed to be reversible and polytropic, with polytropic exponent $\mathrm{n}=1.20$.
a) What is the turbine inlet temperature?
b) What are the power output and heat transfer rate for the turbine?
c) Calculate the rate of net entropy increase, if the heat transfer comes from a source at a temperature $100^{\circ} \mathrm{C}$ higher than the turbine inlet temperature.
C.V. Turbine, this has heat transfer, $\mathrm{PV}^{\mathrm{n}}=$ Const., $\mathrm{n}=1.2$

Air table A.5: $\mathrm{C}_{\mathrm{p}}=1.004 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Exit: $\mathrm{T}_{\mathrm{e}}=300 \mathrm{~K}, \mathrm{P}_{\mathrm{e}}=150 \mathrm{kPa}, \mathrm{V}_{\mathrm{e}}=200 \mathrm{~m} / \mathrm{s}$
a) Process polytropic: $\quad T_{e} / T_{i}=\left(P_{e} / P_{i}\right)^{\frac{n-1}{n}} \Rightarrow T_{i}=353.3 K$
b) $1^{\text {st }}$ Law SSSF: $\quad \dot{m}_{i}\left(h+V^{2} / 2\right)_{i n}+\dot{Q}=\dot{m}_{e x}\left(h+V^{2} / 2\right)_{\mathrm{ex}}+\dot{\mathrm{W}}_{\mathrm{T}}$

Reversible shaft work in a polytropic process, Eq.9.15 and Eq.9.20

$$
\begin{aligned}
\mathrm{w}_{\mathrm{T}}= & -\int \mathrm{vdP}+\left(\mathbf{V}_{\mathrm{i}}^{2}-\mathbf{V}_{\mathrm{e}}^{2}\right) / 2=-\frac{\mathrm{n}}{\mathrm{n}-1}\left(\mathrm{P}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}-\mathrm{P}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\left(\mathbf{V}_{\mathrm{i}}^{2}-\mathbf{V}_{\mathrm{e}}^{2}\right) / 2 \\
= & -\frac{\mathrm{n}}{\mathrm{n}-1} \mathrm{R}\left(\mathrm{~T}_{\mathrm{e}}-\mathrm{T}_{\mathrm{i}}\right)-\mathbf{V}_{\mathrm{e}}^{2} / 2=71.8 \mathrm{~kJ} / \mathrm{kg} \\
\dot{\mathrm{~W}}_{\mathrm{T}}= & \dot{\mathrm{m}}_{\mathrm{T}}=\mathbf{3 5 . 9} \mathbf{k W}
\end{aligned}
$$

Assume Constant Specific Heat

$$
\dot{\mathrm{Q}}=\dot{\mathrm{m}}\left[\mathrm{C}_{\mathrm{P}}\left(\mathrm{~T}_{\mathrm{e}}-\mathrm{T}_{\mathrm{i}}\right)-\mathrm{V}_{\mathrm{e}}^{2} / 2\right]+\dot{\mathrm{W}}_{\mathrm{T}}=19.2 \mathrm{~kW}
$$

c) $2^{\text {nd }}$ Law: $\mathrm{dS}_{\text {net }} / \mathrm{dt}=\dot{\mathrm{m}}\left(\mathrm{s}_{\mathrm{e}}-\mathrm{s}_{\mathrm{i}}\right)-\dot{\mathrm{Q}}_{\mathrm{H}} / \mathrm{T}_{\mathrm{H}}, \quad \mathrm{T}_{\mathrm{H}}=\mathrm{T}_{\mathrm{i}}+100=453.3 \mathrm{~K}$

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{e}}-\mathrm{s}_{\mathrm{i}}=\mathrm{C}_{\mathrm{p}} \ln \frac{\mathrm{~T}_{\mathrm{e}}}{\mathrm{~T}_{\mathrm{i}}}-\mathrm{R} \ln \frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{i}}}=0.1174 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
& \mathrm{dS}_{\mathrm{net}} / \mathrm{dt}=0.5 \times 0.1174-19.2 / 453.3=0.0163 \mathrm{~kW} / \mathrm{K}
\end{aligned}
$$

9.60 A nozzle is required to produce a flow of air at $200 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{C}, 100 \mathrm{kPa}$. It is estimated that the nozzle has an isentropic efficiency of 92%. What nozzle inlet pressure and temperature is required assuming the inlet kinetic energy is negligible?
C.V. Air nozzle: $\mathrm{P}_{\mathrm{e}}, \mathrm{T}_{\mathrm{e}}$ (real), $\mathrm{V}_{\mathrm{e}}($ real $), \eta_{\mathrm{s}}($ real $)$

For the real process: $h_{i}=h_{e}+V_{e}^{2} / 2$ or

$$
\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{e}}+\mathrm{V}_{\mathrm{e}}^{2} / 2 \mathrm{C}_{\mathrm{P} 0}=293.2+200^{2} / 2 \times 1000 \times 1.004=\mathbf{3 1 3 . 1} \mathbf{K}
$$

For the ideal process:

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{es}}^{2} / 2=\mathbf{V}_{\mathrm{e}}^{2} / 2 \eta_{\mathrm{s}}=200^{2} / 2 \times 1000 \times 0.92=21.74 \mathrm{~kJ} / \mathrm{kg} \\
& \text { and } \quad \mathrm{h}_{\mathrm{i}}=\mathrm{h}_{\mathrm{es}}+\left(\mathbf{V}_{\mathrm{es}}^{2} / 2\right) \\
& \mathrm{T}_{\mathrm{es}}=\mathrm{T}_{\mathrm{i}}-\mathbf{V}_{\mathrm{es}}^{2} /\left(2 \mathrm{C}_{\mathrm{P} 0}\right)=313.1-21.74 / 1.004=291.4 \mathrm{~K} \\
& \Rightarrow \quad \mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{e}}\left(\mathrm{~T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{es}}\right)^{\frac{\mathrm{k}}{\mathrm{k}-1}}=100\left(\frac{313.1}{291.4}\right)^{\mathrm{F} .50}=\mathbf{1 2 8 . 6} \mathbf{~ k P a}
\end{aligned}
$$

9.71 A two-stage turbine receives air at $1160 \mathrm{~K}, 5.0 \mathrm{MPa}$. The first stage exit at 1 MPa then enters stage 2, which has an exit pressure of 200 kPa . Each stage has an isentropic efficiency of 85%. Find the specific work in each stage, the overall isentropic efficiency, and the total entropy generation.

C.V. around each turbine for first the ideal and then the actual produces for stage 1 :
Ideal T1: $s_{2 s}=s_{1} \Rightarrow P_{r 2}=P_{r 1} P_{2} / P_{1}=33.297$
$\Rightarrow \mathrm{h}_{2 \mathrm{~s}}=789.93 ; \quad \mathrm{w}_{\mathrm{t} 1 \mathrm{~s}}=\mathrm{h}_{2 \mathrm{~s}}-\mathrm{h}_{1}=\mathbf{4 4 1 . 0 4}$

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{T} 1 \mathrm{ac}}=\eta \mathrm{w}_{\mathrm{T} 1 \mathrm{~s}}=374.88 \mathrm{~kJ} / \mathrm{kg} \Rightarrow \mathrm{~h}_{2 \mathrm{ac}}=856.09, \mathrm{P}_{\mathrm{r} 2 \mathrm{ac}}=44.57 \\
& \mathrm{P}_{\mathrm{r} 3}=\mathrm{P}_{\mathrm{r} 2 \mathrm{ac}} \mathrm{P}_{3} / \mathrm{P}_{2}=8.915 \Rightarrow \mathrm{~h}_{3 \mathrm{~s}}=544.49, \quad \mathrm{w}_{\mathrm{T} 2 \mathrm{~s}}=\mathbf{3 1 1 . 6} \\
& \mathrm{w}_{\mathrm{T} 2 \mathrm{ac}}=\eta \mathrm{w}_{\mathrm{T} 2 \mathrm{~s}}=264.86 \Rightarrow \mathrm{~h}_{3 \mathrm{ac}}=591.23, \quad \mathrm{~s}_{\mathrm{T} 3 \mathrm{ac}}=7.5491 \\
& \mathrm{~T}_{2 \mathrm{~s}}=770, \mathrm{~T}_{2 \mathrm{ac}}=830, \mathrm{~T}_{3 \mathrm{~s}}=540, \quad \mathrm{~T}_{3 \mathrm{ac}} \cong 585
\end{aligned}
$$

For the overall isentropic efficiency we need the isentropic work:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{r} 3 \mathrm{ss}}=\mathrm{P}_{\mathrm{r} 1} \mathrm{P}_{3} / \mathrm{P}_{1}=6.659 \Rightarrow \mathrm{~h}_{3 \mathrm{ss}}=500.97 \mathrm{w}_{\mathrm{ss}}=730.0 \\
& \eta=\left(\mathrm{w}_{\mathrm{T} 1 \mathrm{ac}}+\mathrm{w}_{\mathrm{T} 2 \mathrm{ac}} / \mathrm{w}_{\mathrm{ss}}=\mathbf{0 . 8 7 6}\right. \\
& \mathrm{s}_{\mathrm{T} \text { gen }}=\mathrm{s}_{3}-\mathrm{s}_{1}=\mathrm{s}_{\mathrm{T} 3}^{\circ}-\mathrm{s}_{\mathrm{T} 1}^{\circ}-\mathrm{R} \ln \left(\mathrm{P}_{3} / \mathrm{P}_{1}\right) \\
& \quad=7.5491-8.30626-0.287 \ln \left(\frac{200}{5000}\right)=\mathbf{0 . 1 6 6 6} \mathbf{~ k J} / \mathbf{k g ~ K}
\end{aligned}
$$

9.72 A paper mill, shown in Fig. P9.72, has two steam generators, one at 4.5 MPa , $300^{\circ} \mathrm{C}$ and one at $8 \mathrm{MPa}, 500^{\circ} \mathrm{C}$. Each generator feeds a turbine, both of which have an exhaust pressure of 1.2 MPa and isentropic efficiency of 87%, such that their combined power output is 20 MW . The two exhaust flows are mixed adiabatically to produce saturated vapor at 1.2 MPa . Find the two mass flow rates and the entropy produced in each turbine and in the mixing chamber.

$\begin{array}{lll}3 \mathrm{~s}: \mathrm{x}_{3 \mathrm{~s}}=(6.2828-2.2165) / 4.3067=0.9442 & \Rightarrow \\ \mathrm{~h}_{3 \mathrm{~s}}=798.6+0.9442 \times 1986.2=2673.9 \quad & \Rightarrow \quad \mathrm{w}_{\mathrm{T} 1, \mathrm{~s}}=269.2 \mathrm{~kJ} / \mathrm{kg}\end{array}$
$\mathrm{w}_{\mathrm{T} 1, \mathrm{AC}}=0.87 \times 269.2=234.2$,
$h_{3, A C}=2708.9=798.6+x_{3 A C} \times 1986.2 \Rightarrow x_{3 A C}=0.9618$
$\mathrm{s}_{3 \mathrm{AC}}=2.2165+0.9618 \times 4.3067=6.3586$,
$\mathrm{s}_{\text {genT1 }}=6.3586-6.2828=0.0758 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
CV T2: $w_{T 2, \mathrm{~s}}=h_{2}-h_{4 s}, \quad s_{4 s}=s_{2}=6.7240$
$4 \mathrm{~s}: \mathrm{T}_{4 \mathrm{~s}}=226.7^{\circ} \mathrm{C}, \mathrm{h}_{4 \mathrm{~s}}=2881.1, \mathrm{w}_{\mathrm{T} 2, \mathrm{~s}}=517.2, \quad \mathrm{w}_{\mathrm{T} 2, \mathrm{AC}}=450.0$
$\mathrm{h}_{4, \mathrm{AC}}=2948.3, \mathrm{~s}_{4 \mathrm{AC}}=6.8546$,
$\mathrm{s}_{\text {gen } \mathrm{T} 2}=6.8546-6.7240=0.1306 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
C.V mixer: $\quad \dot{\mathrm{m}}_{\mathrm{T} 1} \mathrm{~h}_{3 \mathrm{AC}}+\dot{\mathrm{m}}_{\mathrm{T} 2} \mathrm{~h}_{4, \mathrm{AC}}=\left(\dot{\mathrm{m}}_{\mathrm{T} 1}+\dot{\mathrm{m}}_{\mathrm{T} 2}\right) \mathrm{h}_{5}$

$$
\begin{gathered}
\Rightarrow\left(\dot{\mathrm{m}}_{\mathrm{T} 1} / \dot{\mathrm{m}}_{\mathrm{Tot}}\right)\left(\mathrm{h}_{3, \mathrm{AC}}-\mathrm{h}_{4, \mathrm{AC}}\right)=\mathrm{h}_{5}-\mathrm{h}_{4, \mathrm{AC}} \\
\left(\dot{\mathrm{~m}}_{\mathrm{T} 1} \dot{\mathrm{~m}}_{\mathrm{Tot}}\right)=0.683, \quad\left(\dot{\mathrm{~m}}_{\mathrm{T} 2} / \dot{\mathrm{m}}_{\mathrm{tot}}\right)=0.317
\end{gathered}
$$

C.V. Total: $\quad \dot{\mathrm{m}}_{1} \mathrm{~h}_{1}+\dot{\mathrm{m}}_{2} \mathrm{~h}_{2}=20 \mathrm{MW}+\dot{\mathrm{m}}_{\text {tot }} \mathrm{h}_{5}$
$\dot{\mathrm{m}}_{\text {tot }} \times 302.598=20 \mathrm{MW} \Rightarrow \dot{\mathrm{m}}_{\text {tot }}=66.094 \mathrm{~kg} / \mathrm{s}$
$\dot{\mathrm{m}}_{\text {tot }} \mathrm{S}_{\mathrm{gen}}=\dot{\mathrm{m}}_{\mathrm{tot}} \mathrm{s}_{5}-\dot{\mathrm{m}}_{\mathrm{T} 1} \mathrm{~s}_{3}-\dot{\mathrm{m}}_{\mathrm{T} 2} \mathrm{~s}_{4}=0.00747 \dot{\mathrm{~m}}_{\mathrm{tot}}=\mathbf{0 . 4 9 4} \mathbf{~ k W} / \mathbf{K}$

