
21-228 Week 8 notes

October 26, 2001

1 Law of Total Probability

Theorem 1.1. Let B1, B2, . . . , Bn be pairwise disjoint events which partition
Ω, for any other event A,

P (A) =
n∑
i=1

P (A|Bi)P (Bi)

Proof. Exercise.

Example:
Suppose we have two crooked dice, so that if the outcome of the first is X

then the outcome of the second Y satisfies Y is equally likely to be X−1, X,X+1
(If X = 1 or X = 6, then instead we have two equallylikely values)

What is the probability that X = Y , if P (X = i) = 1
6 for each i?

2 Random Variables

Now a new topic. Consider a probability space Ω. A random variable takes each
outcome and assignes to it a real number. Thus, we have:

Definition 2.1. A random variable is a function X : ω → R.

Definition 2.2. Let A ⊆ R, X a random variable. Then Pr(X ∈ A) = Pr{ω :
X(ω) ∈ A}.
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2.1 Examples

2.1.1 Two Dice

Consider rolling two fair dice. Then Ω is simply [6]2. Let X(ω) = x1 +x2 – that
is, the sum of the numbers on the dice. Then what is Pr(X = k) for various k?

2.1.2 Tossing Coins

Suppose we toss n (distinguishable) loaded coins, where each coin has a prob-
ability p of coming up heads. Then Ω = {H,T}n, and P (ω) = pk(1 − p)n−k if
there are k heads in ω. Let X(ω) be the number of heads in ω.

There are
(
n
k

)
ways of getting exactly k heads, each of which has probability

pk(1− p)n−k chance of happening. Therefore, Pr(X = k) is
(
n
k

)
pk(1− p)n−k.

This is a very common random variable. Notice that there are two param-
eters in the problem – the number of coins, n, and the probability of heads, p.
Therefore, we call X the binary randim variable Bn,p.

2.1.3 Poisson Variable

Let Ω = N, and let X simply be the identity function. Let λ be a real number.
Suppose that P (ω = k) = λke−λ

k! .
The resulting random variable is then called the Poisson Random Variable,

and is denoted Po(λ) (λ being the parameter – we will see later that λ has an
important property).

Poisson variables and Binomial variables have an interesting relationship.
The idea is that we want to model a situaton that, no matter how many trails
we make, we “expect” (will formally define expectation shortly) to get the same
number of successes. Thus, if we make very many trials, the probability of
success is low, but we have a small number of trials, the probability of success
is high.

Suppose that k, λ are fixed, and consider the binomial random variable
B(n, λ/n). Recall that f(n) ≈ g(n) iff limn→∞ f(n)/g(n) = 1.

Theorem 2.3.

lim
n→∞

P (Bn,λ/n = k) =
λke−λ

k!

Proof. First, we show that
(
n
k

)
≈ nk

k! , for a fixed k.
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n
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n
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The last line can be proven by inducton on k. Since we will let n→∞, the
right factor in the last line above will tend to 1.

Now that we know
(
n
k

)
≈ nk

k! , we have:

lim
n→∞

P (Bn,λ/′n = k) = lim
n→∞

(
n

k

)
(
λ

n
)k(1− λ

n
)n−k

=
λke−λ

k!

The last line follows from the approximation we made for
(
n
k

)
.

2.2 Expectation of a random variable

Definition 2.4 (Expected Value). If X is a random variable, then the ex-
pected value for X is given by

E(X) =
∑
k∈R

kP (Z = k)

Of course, we only need to consider those k that Z takes with nonzero
probability.

2.2.1 Two Dice

Suppose we toss two fair dice, and let Z be the sum of the two values. What is
E(Z)?

2.2.2 Trials until success

Suppose we flip a coin with probability of heads p repeatedly until we get heads.
Let X be the number of flips required. What is E(Z)?
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2.2.3 Binomial Distribution

E(Bn,p) =
n∑
k=0

k

(
n

K

)
pk(1− p)n−k

=
n∑
k=1

k

(
n

k

)
pk(1− p)n−k

=
n∑
k=1

n

(
n− 1
k − 1

)
pk(1− p)n−k

= np
n∑
k=1

(
n− 1
k − 1

)
pk−1(1− p)n−k

= np
n−1∑
k=0

(
n− 1
k

)
pk(1− p)(n−1)−k

= np(p+ (1− p))n−1

= np

The second-to-last line follows from the bimomial theorem – that (x+y)n =∑n
k=0

(
n
k

)
xkyn−k.

2.2.4 Additivity Rule

Theorem 2.5 (Additivity Rule). If X, Y are random variables on a proba-
bility space Ω, then E(X + Y ) = E(X) + E(Y )

Proof.

E(X) + E(Y ) =
∑
k∈R

kPr(X = k) +
∑
k∈R

kPr(Y = k)

=
∑
k∈R

k
∑

ω∈Ω:X(ω)=k

Pr(ω) + k
∑

ω∈Ω:Y (ω)=k

Pr(ω)

=
∑
ω∈Ω

X(ω) Pr(ω) +
∑
ω∈Ω

Y (ω) Pr(ω)

=
∑
ω∈Ω

(X(ω) + Y (ω)) Pr(ω)

=
∑
ω∈Ω

(X + Y )(ω) Pr(ω)

=
∑
k∈R

k
∑

ω∈Ω:(X+Y )(ω)=k

Pr(ω)

=
∑
k∈R

kPr(X + Y = k)

= E(X + Y )
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This can be used to find a much simpler proof that E(Bn,p) = np.
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