
21-228 Week 4 Notes

October 8, 2001

1 Generating Functions

1.1 Selecting Fruit

We can use these as another tool for counting functions. More generally they
are an alternative method for dealing with sequences.

First, let us consider selecting objects. Suppose we have two apples, three
nectarines, and for plums. We wish to give a compact description of all possible
fruit selections with at least one of each fruit (disregarding order).

Let A stand for “apple”, N for “nectarine” and P for “plum”
Then we might let ANNPPP stand for “one apple, two nectarines, and

three plums. If we do this, we see a useful shorthand – rewrite this as AN2P 3.
Also, a selection denoted ANP is the same as one denoted PNA. Thereforew
e have ANP or ANP 2, but not both at the same time. So we can think of our
possible fruit selections as being multiplications of the following form:

(A+A2)(N +N2 +N3)(P + P 2 + P 3 + P 4) (1.1)

And we can expand the resulting polynomial to get the result of making this
substitution. If we want all arrangements of, say, six fruits then, we substitute x
in for each of A, P , and N , and expand the resulting polynomial. The coefficient
of the x6 term is the desired answer.

In the above example, each fruit was the same in the end – since we just
wanted six pieces, it didn’t matter which fruits were included. Thus, each one
has the same “weight” when we tally up our total. Now, suppose we want a more
“weighted” counting. For instance, let’s say a plum has 20 calories, a nectarine
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has 40 calories, and an apple 60 calories. Say we want all fruit selections with
200 calories.

Then, in a sense, a plum would have “weight” 20, a nectarine would have
“weight” 40, and an apple would have “weight” 60. So, to get the total number
of calories, we would instead subsitute x20 for P , x40 for N , and so forth. After
expanding the polynomial, we take the coefficient of the x200 term.

In general, then, when we want the number of ways to produce a “weighted”
sum of k in this manner, we expand the polynomial resulting by substituting
an object of weight w with xw and then find the coefficient of xk. Thus, we can
produce a sequence ai, which is the number of ways to choose objects to get
weighted sum i. From now on, we say that a selection has “value” i (denoted
v(i)) if the weight has

Now let’s make things a bit more interesting. Suppose we have infinitely
many of each piece of fruit, and furthermore, we needn’t take at least one of
each. We then need to replace (1.1) with

(A0 +A1 + . . . )(N0 +N1 + . . . )(P 0 + P 1 + . . . )

And then the xk selection of this polynomial, when expanded is the desired
value. But I just lied when I said polynomial, of course – the above values have
infinitely many terms. But the approach is the same. Multiply out the expres-
sion to the nth term (this can be done even though each factor has infinitely
many terms – why?) to get the xn coefficient. Replacing A, N , and P by x
thus gives us what we want.

1.2 Definition of Generating Function

Suppose that cn is a sequence. Then the generating function for cn is
∑n
a=1 cnx

n.
The examples we went through above calculating the generating function, for
instance, the sequence ai where ai is the way to select fruits to get i pieces of
fruit.

However, we should view these functions as “expressions” rather than a
“power series” that many of you may have seen in a calculus course. In this
context, we therefore use the term “formal power series”.

1.3 Product Principle for Generating Functions

Theorem 1.1 (Product Principle for Generating Function). Let v and
w be nonnegfative integer valued functions defined on sets S and T . Let ai be
the number of objects s in S with v(s) = i and bi be the number of objects t in
T with w(t) = i. Then

( ∞∑
i=0

aix
i

)( ∞∑
i=0

bix
i

)
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Is the generating function for the sequence cj, where cj is the number of
ordered pairts (s, t) ∈ S × T with v(s) + w(t) = j.

Proof. A result of the sum and product principle we learned earlier.

1.4 Generating function for multisets

Theorem 1.2. The generating function for the number of k element multisets
of an n element set is (1− x)−n.

Proof. By the earlier techniques

2 Applications to Partitions and I/E

2.1 Change-Making

Suppose that we have a pile of nickels, dimes, and quarters, and we wish to
make change for a dollar. In what ways can we do this?

Let’s apply the technique of last time. We let N stand for nickel, D for dime,
and Q for quarter.

Then we have

(N0 ⊕N1 ⊕ . . . )(D0 ⊕D1 ⊕ . . . )(Q0 ⊕Q1 ⊕ . . . )

We want a “weighted” sum of these to reach 100. So we replace N by x5, D
by x10, and Q by x25.

We then get the following generating function:

(x0 + x5 + . . . )(x0 + x10 + . . . )(x0 + x25 + . . . )

Which simplifies to, by the formula for geometric sum:

1
1− x5

1
1− x10

1
1− x25

There’s a problem here, though – how the hell do we find the x100 coefficient
in the corresponding power series?

Let ci be the number of ways to make change for i cents using nickels, dimes,
and quarters. To find c100, we first work with simpler problems. W e ask what
we can do if there are only nickels and dimes. So let bi be the number of ways
to make change for i cents using only nickels and dimes, ai be the ways of doing
so with only nickels.

Techniques similar to the above show that
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(1− x5)−1(1− x10)−1 =
∞∑
i=0

bix
i (2.1)

Also, we know that

(1− x5)−1 =
∞∑
i=0

aix
i

Let us multiply both sides of (2.1) to get:

(1− x5−1) = (1− x10)
∞∑
i=0

bix
i

Substituting, we get:

∞∑
i=0

aix
i =

∞∑
i=0

bi(xi − xi+10)

=
∞∑
i=0

aix
i =

∞∑
i=0

bix
i −

∞∑
i=0

bix
i+10

Now, let b−10 = b−9 = · · · = b−1 = 0, we may rewrite as

∞∑
i=0

aix
i =

∞∑
i=0

bix
i −

∞∑
i=0

bi−10x
i

By convention, we set a0 = b0 = c0 = 1 – this is more for notational
convenience – and it makes a certain sense – the change consisting of nothing
at all gives us 0 cents. Dividing by xi now tells us that

bi = ai + bi−10

So now we may easily calculate all of the bi, since the ai are easy to find.
How do we build ot the ci? we perform a similar trick.
We get

( ∞∑
i=0

bix
i

)
(1− x25)−1 =

∞∑
i=0

cix
i

And as before, we isolate the bixi to get:
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∞∑
i=0

bix
i = (1− x25)

∞∑
i=0

cix
i

Again, we let ci = 0 when i < 0, so

∑
i=0

bix
i =

∞∑
i=0

(ci − ci−25)xi

Thus, ci = bi + ci−25.

2.2 Generating Functions for Integer Partitions

So, we have essenetially found a way for generating all partitions of a number
into parts of size 5, 10, and 25. We can apply techniques analagous to those
above to prove the following statement:

Theorem 2.1. Let ai be the number of ways to partition the integer i using
integers 1, 2, . . . , n. Then the generating function for ai is

n∏
j=1

1
1− xj

If we want the total number of all partitions, we take the above over all
integers – that is:

∞∏
j=1

1
1− xj

3 Application to Binomial Coefficients

Suppose that we have n different candy bars and want to select k of them. We
know from previous methods that the tnumber of ways to do this is

(
n
k

)
. We

may also get the answer using generating function. Each candy bar may get
chosen 0 or 1 times. Let ak be the number of ways to choose k pieces of candy
out of n. Then the generating function for ak is (1 + x)n. (Why?). Thus,
another proof that (1 + x)n =

∑n
i=0

(
n
i

)
xi.

Now, let’s extend the definition of binomial coefficients:
Remember we noted before that

(
n
k

)
= (n)k

k! . Let m be a positive number.
Then
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(
−m
k

)
=

∏k−1
i=0 (−m− i)

k!

= (−1)k
∏k−1
i=0 m+ i

k!

= (−1)k
(
m+ k − 1

k

)
So we have just proved:

Theorem 3.1. If m, k > 0, then:(
−m
k

)
= (−1)k

(
m+ k − 1

k

)
We can apply the binomial theorem to get:

(1 + x)−m =
∞∑
k=0

(
−m
k

)
xk

3.1 Apps to Inclusion/Exclusion

We may solve this using inclusion/exclusion (how?).
Let’s say we wish to give 10 pieces of candy to three children so no child gets

more than four pieces.
As seen above, the generating function is (1 + x+ x2 + x3 + x4)3.
We wish to find the x10 coefficient to this. We can find this by noticing

(1− x)(1 + x+ x2 + x3 + x4) = 1− x5

So

(1 + x+ x2 + x3 + x4) =
1− x5

1− x
The generating function is the cube of the above, so cubing both sides yields

(1 + x+ x2 + x3 + x4)3 =
(1− x5)3

(1− x)3

= (1− x5)3(1− x)−3

= (1− 3x5 + 3x10 − x15)
∞∑
i=0

(
3 + i− 1

i

)
xi

= (1− 3x5 + 3x10 − x15)
∞∑
i=0

(
2 + i

i

)
xi
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The term involving x10 is

(
2 + 10

10

)
x10 − 3x5

(
2 + 5

5

)
x5 + 3x10

(
2 + 0

0

)
x0

The coefficient works out to
(

12
10

)
− 3
(

2+5
5

)
+ 3
(

2+0
0

)
– which is 66− 3(21) +

3(1) = 3.

4 Recurrence Relations and Generating Func-
tions

4.1 The Idea of a Recurrence Relation

One of the reasons why generating functions are an important tool is that we
can use them to solve recurrences.

For instance, we may have an = 2an−1, or an = 2an−1−an−2, or so forth. If
each term is a multiple of some ai, we say the recurrence is homogeneous. We
say a recurrence is of order k if the recurrence uses the terms an through an−k
(i.e. the range of elements used spans at most (k + 1) elements).

4.2 How Generating functions are Relevant

Example: Find the generating function for ai, where ai is the number of
elements of an i element set.

We know that a0 = 1, and ai+1 = 2ai whenever i ≥ 0.
We multiply both sides by xi and sum over all i to get:

∞∑
i=0

ai+1x
i+1 =

∞∑
i=0

2aixi+1

So:

∞∑
i=0

ai+1x
i+1 = 2x

∞∑
i=0

aix
i

Now, consider the left hand side of the above equation. Since a0 = 1, we
have:

∞∑
i=0

aix
i − a0 = 2x

∞∑
i=0

aix
i

So we have

7



a0 =
∞∑
i=0

aix
i − 2x

∞∑
i=0

aix
i

So,

(1− 2x)
∞∑
i=0

aix
i = a0

So, we have

a0

1− 2x
=
∞∑
i=0

aix
i = a0

∞∑
i=0

(2x)i

So, it follows that ai = a02i.
Therefore, since a0 = 1, we have ai = 2i.
Now, we could easily have done this problem without generating functions,

so let’s now do something a bit different. What if we have a0 = 0, but now
an+1 = 2an + (n+ 1)?

Then we can do the same technique:

∞∑
i=0

ai+1x
i+1 =

∞∑
i=0

2aixi+1 + (i+ 1)xi+1

So,

∞∑
i=0

ai+1x
i+1 = 2x

( ∞∑
i=0

aix
i + (i+ 1)xi

)
Now, since a0 = 0, the above is the same as:

∞∑
i=0

aix
i = 2x

( ∞∑
i=0

aix
i + (i+ 1)xi

)
Moving the first term onto the lefthand side gives us

(1− 2x)
∞∑
i=0

aix
i = 2x(

∞∑
i=0

(i+ 1)xi)

The sum on the right hand side can be found by integrating – upon in-
tegrating we get

∑∞
i=1 x

i, which is x
1−x . Taking the derivative again gives us

1
(1−x)2 .
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So we have

(1− 2x)
∞∑
i=0

=
2x

(1− x)2
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