
21-228 Week 3 Notes

September 16, 2001

1 Multinomial Coefficients

Suppose that we have n objects, and for each i from 1 to m, ki labels of type i.
Suppose further that k1 + k2 + · · · + km = n. Think that we have n chairs, m
different colors, and we must paint ki chairs using color i. How many ways can
we do this?

We first may choose k1 chairs to be color 1. Then there are n − k1 chairs
left, and we have colors 2 through m that we need to deal with. So the problem
is reduced to first coloring chairs with color 1, then reducing the problem to
coloring the chairs with colors 2 through m.

Definition 1.1. Denote by
(

n
k1,k2,...,km

)
the number of ways to paint the colors

of n chairs so that exactly ki of the chairs are colored with color i. More for-
mally, this is the number of ways to partition an n element set into a list of
sets, where the ith set in the list has size ki. In using this notation, we always
require that

∑m
i=1 ki = n.

(
n

k1, k2, . . . , km

)
=
(
n

k1

)(
n− k1

k2, . . . , km

)
So we have formed the essence of a recursive method of calculating the

desired value. Now we need the base case. We saw before that the base case
happens when m = 2, and we learned that:

(
n

k1, k2

)
=

n!
k1!k2!

1



This suggests a guess for a formula:

(
n

k1, . . . , km

)
=

n!
k1! . . . km!

And we can prove this using induction:

Theorem 1.2.
(

n
k1,k2,...,km

)
= n!

k1!k2!...km!

Proof. By induction. As seen before, this is true whenever m = 2, for all choices
of n, k1, and k2 with k1 + k2 = n. suppose the statement is true for m = m0,
and consider the case m = m0 + 1. From the above discussion, we know:

(
n

k1, k2, . . . , km0 + 1

)
=
(
n

k1

)(
n− k1

k2, . . . , km0 + 1

)
Now, in the right hand side multinomial coefficient, we have m0 terms on

the bottom, so we use the induction hypothesis, as well as the formula for
(
n
k1

)
to get:

(
n

k1, k2, . . . , km0 + 1

)
=

n!
k1!

n− k1!
k2! . . . km0+1!

=
n!

k1!k2! . . . km0+1!

These are called multinomial coefficients, and they are a straightforward gen-
eralization of binomial coefficients. Indeed, we can just think of

(
n
k

)
=
(

n
k,n−k

)
.

And as these binomial coefficients are useful in finding the coefficients of (x+y)n

we can use multinomial coefficients to find the coefficients of (x1 + · · ·+ xm)n:

Theorem 1.3 (Multinomial Theorem). (x1 + · · · + xm)n is the sum of all
possible

(
n

k1,...,km

)
xk1

1 x
k2
2 . . . xkmm , where k1 + · · ·+ km = n.

Proof. Exercise. Runs along the lines as the proof of the binomial theorem.

1.1 An Application: Lattice Paths

Let’s say that we are in the plane, starting at (0, 0). At each step we may go
from (i, j) to (i + 1, j) or (i, j + 1). How many ways can I get from (0, 0) to
(x, y)?

There must be a total for (x+ y) steps taken, and I can pick any y of them
to be going “up” in the plane. Therefore, there are

(
x+y
y

)
total paths.

More generally, to get from (x0, y0) to (x1, y1) there are
(
x1−x0+y1−y0

y1−y0

)
pos-

sible paths.
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Let us return to the special case where (x0, y0) = (0, 0). This time let us
count the number of paths from (0, 0) to (x, y) that do not ever cross the line
y = x. For simplicity, let us assume that x ≤ y – this way, we can consider only
the paths that are only above the line y = x. This is the same as the number of
paths that never even touch the line y = x− 1. This can then be thought of as
counting the total number of paths from (0, 0) to (x, y), and subtracting from
that the number of paths that touch the line y = x− 1. We can make our lives
easier by shifting everything one by one notch, and considering the set of paths
from (0, 1) to (x, y + 1) that touch the line y = x.

But we’ve still got to figure out how to compute that. Here’s what we do:
For each path that does touch the line y = x, we take the path the is before the
first touch, and then rotate this portion about the line y = x. This results in a
path from (1, 0) to (x, y + 1). Furthermore, every path from (1, 0) to (x, y + 1)
must touch the line y = x, as (1, 0) is below the line and (x, y + 1) above it.
Thus we have formed a bijection from the set of paths from (0, 1) to (x, y + 1)
that touch the line y = x − 1, to the set of all paths from (1, 0) to (x, y + 1).
(Why?) This latter number is just, as we have seen,

(
x−1+y+1
y+1

)
, so the total

answer is
(
x+y
y

)
−
(
x−1+y+1
y+1

)
. You can read the book to see the expansion of

that – but in the end you get (
x+ y

x

)
x− y + 1
x+ 1

If x = y = n, we get 1
n+1

(
2n
n

)
.

This is called the Catalan Number

2 Equivalence Relations

Equivalence relations are a specific kind of relation largely used to classify ob-
jects. Two objects that are not necessarily the same, may still share common
properties that make them, for certain purposes, equivalent.

This motivates the idea of what should happen if we have a notion of equiv-
alence. Clearly, any object should be equivalent to itself. Furthermore, if A is
equivalent to B, we also would like B to be equivalent with A – we don’t want
to worry about which one comes first. Finally, if A is equivalent to B, and B
is equivalent to C, this indicates that A shares some properties with B, and
that B shares these properties with C – so we would like to also have that A is
equivalent with C.

Note that equivalence only deals with pairs of elements – just like you can’t
have “a =“ without anything on the right hand side. This suggests the idea
of combining equivalence and relations, and having the concept of equivalence
relations: For an arbitrary relation R, we often use the notation aRb to mean
(a, b) ∈ R

Definition 2.1 (Equivalence Relation). A relation R on a set A is an equiv-
alence relation on A if:
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1. For each a ∈ A, aRa.

2. For each a1, a2 ∈ A, If a1Ra2 then a2Ra1.

3. For each a1, a2, a3 ∈ A, if a1Ra2 and a2Ra3, then a1Ra3.

Example: Let N be the set of natural numbers. Let n be any given natural
number. If a, b are integers, we say that a|b if there is an integer c so that ac = b.
Let us say that xRy iff n|(x− y). Then R is an equivalence relation on N.

1. aRa because n|0 = (a− a) – n · 0 = 0.

2. If aRb then n|(a−b), so there is a c so that nc = (a−b). So n(−c) = (b−a),
so n|(b− a), so bRa.

3. If aRb and bRc, then n|(a − b) and n|(b − c). So there is a d so that
nd = (a − b) and an e so that ne = (b − c). Therefore, nd + ne =
(a− b) + (b− c) = a− c, so n(d+ e) = a− c, so n|(a− c), so aRc.

We can also, given an element a, think about all of the objects in A that are
equivalent to a. We call this the equivalence class containing A”

Definition 2.2 (Equivalence Class). Let R be an equivalence relation on a,
let a ∈ A. Then {b ∈ A | aRb} is called the equivalence class of a under R.

Fact 2.3. If R is an equivalence relation on A, and aRb, then a and b have the
same equivalence class under R.

Proof. Exercise.

We now define another concept that is closely related to that of an equiva-
lence relation:

Definition 2.4 (Partition). Let A be a set. A partition of A is a set P of
subsets of A so that:

1. Each S ∈ P is nonempty

2. Each element of a is in some element S of P .

3. If S1, S2 ∈ P , and S1 6= S2, then S1 and S2 are disjoint.

And now the way in which these are related:

Theorem 2.5. Let R be an equivalence relation on A. Let C be the set of
equivalence classes of R (remember, two equivalence classes that have the same
elements count as the same calss). Then C is a partition of A

Proof. Note that any equivalence class is necessarily nonempty. Furthermore,
each x ∈ A is in some equivalence class. If C1 and C2 are equivalence classes,
and c ∈ C1 ∩ C2, then we know that both the elements in C1 and the elements
in C2 all relate to c. But that means that by Fact 2.3, all of the elements in
C1 ∪ C2 must have the same equivalence class, thus meaning that C1 = C2.
Thus, if C1 6= C2, then C1 and C2 must be disjoint.
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Theorem 2.6. If P is a partion of a set X, then there is one and only one
equivalence relation whose equivalence classes are the classes of P .

Proof. It is fairly clear that if we define the equivalence classes of any relation,
then we also define the relation itself – for each x ∈ X, we know exactly for which
y we have xRy. Furthermore, the relation formed in this way is an equivalence
relation, by our previous results. The details are left as an exercise (see #7 in
section 2.1 of Bogart).

2.1 Counting Partitions

Counting the number of equivalence relations on a set A is a very diffcult task.
Later on, we will introduce more powerful counting techniques to help us per-
form this task. For now, let us simplify things. Let us suppose that we have
a group of n people. We need to split this group into k1 groups of size 1, k2

groups of size 2, and so forth, up to kn groups of size on (clearly, kn can never
be more than 1!). Then, assuming that

∑n
i=1 iki = n, we have:

Theorem 2.7. Let A be a set of size n. If k1, . . . , kn are so that
∑n
i=1 iki = n,

then there the number of partitions of A so that ki elements of the partition have
size i is:

n!∏n
i=1 (ji · ji!)

Proof. We can think about listing the elements of A in order. The first ji
elements listed will be those in a set of size 1, the next 2j2 elements will be
those in a set of size 2, and so forth. Let us now focus our attention on classes
of size k. When we list these elements, the first k of these will be in the first set,
the next k will be in the second set of size k, and so forth. Now, within each
set, there are k! ways of listing elements in each set – furthermore, there are
jk! ways of rearrangling the sets themselves – since the order of the sets, or the
order of the elements in each set does not matter, the by the product principle,
we must divide by (k!)jk , and again by jk!. We therefore get:

n!∏n
i=1 (ji · ji!)

3 Distributions and Multisets

We may think of the counting problems we have given so far as ways of dis-
tributing “labels” among a group of recipients. We will continue in this section
to try and solve more problems of this type. Examples that we have solved so
far:
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1. Distributing k distinct labels to a set of n distinct recipients – no restric-
tions – if a recipient gets more than one label, the order in which the labels
are placed is irrelevant.

2. Distributing k distinct labels to a set of n distinct recipients – each recip-
ient gets at most 1.

3. Distributing k identical labels to a set of n distinct recipients – each re-
cipient gets at most 1.

(I’ve spent loads of time attempting to parse the table on P.85 of Bogart
and have still failed miserably).

Let’s try a few more. Suppose we have k books and a bookshelf with n
shelves. We care now both about which shelf each book goes on as well as the
order of the books on a given shelf. (Thus, the answer will be somewhat greater
than the nk that would occur if we did not care about the order of books on a
given shelf).

Here is how we solve the problem. Suppose that we have already placed m
books, and we wish to place the m+1st book. Note that as we place more books,
the number of possible “different places” that each book my go will increase.
Say that there were km possible places for the mth book to go. Once we placed
the mth book, we could in essence have placed the m+ 1st book into the same
number of places. If we placed it in the spot that m had ended up in, then in
fact we would place it either before or after book m – thus the spot that book
m occupies has really been split up into two available spots for book m + 1.
Therefore, there are km + 1 possible places for book m+ 1 to go.

Hence, the first of the k books may go into each shelf – or any of n places,
the next may go into n+ 1 places, the third may go into n+ 2. In general, we
inductively see that the mth book may go into n+m− 1 places.

Therefore, we see that we have
∏k
i=1(n+ i− 1) total such arrangements.

If instead we stipulate that the books are all identical instead of distinct,
we divide the above by k!, which works out to

(
n+k−1

k

)
, since once we have

distributed them, any “swapping” around results in distributions that are no
longer different.

We can also think of this last problem in terms of giving identical pieces of
candy to children. What if we want to ensure that each child gets at least one
piece? We first set aside n pieces for each child, then distribute the remainder
as above.

4 Multisets

One final application is we can ask what happens if we have a situation where
we want to choose elements from a set, without regard for order, but now we
are allowed to choose an element more than once.

Example: How many fruit baskets with 10 pieces of fruit can be constructed
using any number of oranges, apples, pears, and bananas?
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This can be solved in the same way as giving candy to the children. Why?

Theorem 4.1. Thus, if we wish to select k objects from a group of n, with
repetition allowed, where order of selection of objects does not matter, we have
a total of (

n+ k − 1
k

)
possibilities.

4.1 Broken Permutations

Let’s suppose we have a set of k elements, and we want to break it into n
different stacks, so that each element appears in some stack, and where the
order of the stacks matters. We also require that each stack have at least one
element.

Then we take the ordered distributions, and by first picking the first element
in each stack, we get:

k!
(k − 1)!

(k − n)!(n− 1)! = k!
(
k − 1
n− 1

)
Such distributions. But we also need now to divide by n! to account for the

fact that the recipients are identical.

4.2 Problems We have Solved

So, now we have the following list of questions and their answers:

1. If we have k distinct books and n distinct shelves, there are
∏k
i=1 n−i+1 =

(n+k−1)!
(n−1)! arrangements.

2. If we have k identical books and n distinct shelves, then there are
(
n+k−1
n−1

)
arrangements.

3. If we have k distinct books and n identical shelves, then we have (n+k−1!)
(n−1)!n!

arrangements.

4. If we have k distinct books and n distinct shelves, and we require that
each shelf get at least one book, then we have (k−1)!

(n−1)! arrangements.

5. If we have k identical books and n distinct shelves, and we require that
each shelf get at least one book, then we have

(
k−1
n−1

)
=
(
k−1
k−n
)

arrangements.

6. If we have k distinct books and n distinct shelves, and we require that
each shelf get at least one book, then we have

(
k
n

) (k−1)!
(n−1)! arrangements.

We still do not know exactly what to do if both the books and the shelves
are identical. We will try and work towards solving this problem soon.
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5 Mathematical Games

Here, we get into a discussion of mathematical games, and how we may solve
them.

5.0.1 Take-Away

Suppose we have a stack of 17 chips. Two players play, and each player in his
or her turn may remove up to 4 chips in a turn. The player to remove the last
chip wins. What is a winning strategy for the first player?

We solve problems like this by working backwards. The player to have left
zero chips wins. So we want to move with 1, 2, 3, or 4 chips remaining. If
there are 5 chips remaining, we see that no matter what we do, we must leave
our opponent with 1, 2, 3, or 4 chips. So we want to force our opponent to
move with 5 chips remaining. To this end, we want to ourselves move with 6-9
chips remaining. We can do this my making our opponent move with 10 chips
remaining.

Definition 5.1. A game in a state where the player that is about to move can
force a win with optimal play is called an N -position. A game in a state where
the player that has just moved can force a win is called a P -position.

So, if we’re moving, we want to be in an N -position, and want to force the
game into a P -position.

Note that if we are in a game where all moves lead to an N -position, then
we are in a losing position (i.e. a P -position). Also, if there is even one move
that leads to a P -position, then the player about to move can win.

In terms of the game that we have just described, a position where there
are no chips remaining is a P -position, and if there are 1-4 chips remaining,
we are in an N -position. So, since all moves from a position with 5 chips
remaining lead to N -positions, then the position with 5 chips remaining must
be a P -position. Further, any position with 6-9 chips remaining has a move
to a P -position (namely, the one with 5 chips remaining), these positions are
N -positions. And so on and so forth, we see that any position where there are
a multiple of 5 chips remaining is a P -position, and all others are N -positions.

If we are playing a game so that

• The game must terminate, and there can be no draws.

• There is no randomness and all information in the game is available to all
players (unlike in cards or backgammon).

• Players must alternate moves – no simultaneous moves are allowed (elim-
inating paper-rock-scissors)

Then it turns out that any position in this game must have a guaranteed
win for one side or the other.

In terms of take-away, this means that no matter how many chips are in the
pile, someone must be guaranteed a win.

8



5.1 Strategy-Stealing

Consider a generalized version of tic-tac-toe. Here, we allow ourselves to have
an m×n board, and instead of winning whenever we have 3 in a row, we require
that we have k in a row, for some fixed k.

We can prove that the second player to move in such a game can never have
a winning strategy. Now, since tic-tac-toe can have draws, this does not imply
that the first-player has a winning strategy (indeed, the familiar tic-tac-toe,
where m = n = k = 3 of course has no winning strategy for either player).

In tic-tac-toe, we associate a position not only the contents of the board,
but also the player whose turn it is.

Then, we have:

Fact 5.2. In a position of tic-tac-toe, if a position is winning for a player then
that position, minus one piece of an opposing player’s type, must also win for
that player. Further, adding one piece of the same player’s type also yields a
winning position for that player.

In other words, having “extra” pieces is always good (unlike chess or checkers,
where there are cases where extra pieces may backfire on us).

Now, suppose that the second player to move has a winning strategy – in
other words, that an empty board is a P -position.

Suppose the first player is “X” and the second player is “O”. After “X”
moves, then “O” moves to place the game into a position where “X” can move,
but the game is still a guaranteed win for “O”. But if we then swap the “X”s
and “O”s, and now say that “O” has the next move, this means that now the
game is a guaranteed win for “X”. If we then remove the “O” that is on the
board, we are at a position where “X” could have moved originally, that is a
guaranteed win for “X”, even if it is “O”’s move! This means that “X” must
have a winning strategy too. But both players can’t have a winning strategy.
Thus the assumption that “O” had a winning strategy is a contradiction.

9


